kopia lustrzana https://github.com/pimoroni/pimoroni-pico
113 wiersze
2.9 KiB
C++
113 wiersze
2.9 KiB
C++
#include <math.h>
|
|
#include <vector>
|
|
|
|
#include "common/pimoroni_common.hpp"
|
|
#include "button.hpp"
|
|
#include "rgbled.hpp"
|
|
#include "breakout_colourlcd320x240.hpp"
|
|
|
|
using namespace pimoroni;
|
|
|
|
static const uint A = 12;
|
|
static const uint B = 13;
|
|
static const uint X = 14;
|
|
static const uint Y = 15;
|
|
static const uint LED_R = 6;
|
|
static const uint LED_G = 7;
|
|
static const uint LED_B = 8;
|
|
|
|
Button buttonA(A, ACTIVE_LOW);
|
|
Button buttonB(B, ACTIVE_LOW);
|
|
Button buttonX(X, ACTIVE_LOW);
|
|
Button buttonY(Y, ACTIVE_LOW);
|
|
|
|
RGBLED rgbled(LED_R, LED_G, LED_B, ACTIVE_LOW);
|
|
|
|
uint16_t buffer[BreakoutColourLCD320x240::WIDTH * BreakoutColourLCD320x240::HEIGHT];
|
|
BreakoutColourLCD320x240 lcd(buffer);
|
|
|
|
void setup_buttons() {
|
|
gpio_set_function(A, GPIO_FUNC_SIO); gpio_set_dir(A, GPIO_IN); gpio_pull_up(A);
|
|
gpio_set_function(B, GPIO_FUNC_SIO); gpio_set_dir(B, GPIO_IN); gpio_pull_up(B);
|
|
gpio_set_function(X, GPIO_FUNC_SIO); gpio_set_dir(X, GPIO_IN); gpio_pull_up(X);
|
|
gpio_set_function(Y, GPIO_FUNC_SIO); gpio_set_dir(Y, GPIO_IN); gpio_pull_up(Y);
|
|
}
|
|
|
|
int main() {
|
|
lcd.init();
|
|
lcd.set_backlight(255);
|
|
|
|
struct pt {
|
|
float x;
|
|
float y;
|
|
uint8_t r;
|
|
float dx;
|
|
float dy;
|
|
uint16_t pen;
|
|
};
|
|
|
|
std::vector<pt> shapes;
|
|
for(int i = 0; i < 100; i++) {
|
|
pt shape;
|
|
shape.x = rand() % lcd.bounds.w;
|
|
shape.y = rand() % lcd.bounds.h;
|
|
shape.r = (rand() % 10) + 3;
|
|
shape.dx = float(rand() % 255) / 64.0f;
|
|
shape.dy = float(rand() % 255) / 64.0f;
|
|
shape.pen = lcd.create_pen(rand() % 255, rand() % 255, rand() % 255);
|
|
shapes.push_back(shape);
|
|
}
|
|
|
|
Point text_location(0, 0);
|
|
|
|
while(true) {
|
|
if(buttonA.read()) text_location.x -= 1;
|
|
if(buttonB.read()) text_location.x += 1;
|
|
|
|
if(buttonX.read()) text_location.y -= 1;
|
|
if(buttonY.read()) text_location.y += 1;
|
|
|
|
lcd.set_pen(120, 40, 60);
|
|
lcd.clear();
|
|
|
|
for(auto &shape : shapes) {
|
|
shape.x += shape.dx;
|
|
shape.y += shape.dy;
|
|
if((shape.x - shape.r) < 0) {
|
|
shape.dx *= -1;
|
|
shape.x = shape.r;
|
|
}
|
|
if((shape.x + shape.r) >= lcd.bounds.w) {
|
|
shape.dx *= -1;
|
|
shape.x = lcd.bounds.w - shape.r;
|
|
}
|
|
if((shape.y - shape.r) < 0) {
|
|
shape.dy *= -1;
|
|
shape.y = shape.r;
|
|
}
|
|
if((shape.y + shape.r) >= lcd.bounds.h) {
|
|
shape.dy *= -1;
|
|
shape.y = lcd.bounds.h - shape.r;
|
|
}
|
|
|
|
lcd.set_pen(shape.pen);
|
|
lcd.circle(Point(shape.x, shape.y), shape.r);
|
|
|
|
}
|
|
|
|
// Since HSV takes a float from 0.0 to 1.0 indicating hue,
|
|
// then we can divide millis by the number of milliseconds
|
|
// we want a full colour cycle to take. 5000 = 5 sec.
|
|
rgbled.set_hsv(float(millis()) / 5000.0f, 1.0f, 1.0f);
|
|
rgbled.set_brightness(127 + sinf(millis() / 100.0f / 3.14159f) * 127);
|
|
|
|
lcd.set_pen(255, 255, 255);
|
|
lcd.text("Hello World", text_location, 320);
|
|
|
|
// update screen
|
|
lcd.update();
|
|
}
|
|
|
|
return 0;
|
|
}
|