pimoroni-pico/drivers/rv3028/rv3028.cpp

840 wiersze
27 KiB
C++

/******************************************************************************
rv3028.cpp
Based on RV-3028-C7 Arduino Library by Constantin Koch, July 25, 2019
https://github.com/constiko/RV-3028_C7-Arduino_Library
This code is released under the [MIT License](http://opensource.org/licenses/MIT).
Please review the LICENSE file included with this example.
Distributed as-is; no warranty is given.
******************************************************************************/
#include "rv3028.hpp"
//****************************************************************************//
//
// Settings and configuration
//
//****************************************************************************//
// Parse the __DATE__ predefined macro to generate date defaults:
// __Date__ Format: MMM DD YYYY (First D may be a space if <10)
// <MONTH>
#define BUILD_MONTH_JAN ((__DATE__[0] == 'J') && (__DATE__[1] == 'a')) ? 1 : 0
#define BUILD_MONTH_FEB (__DATE__[0] == 'F') ? 2 : 0
#define BUILD_MONTH_MAR ((__DATE__[0] == 'M') && (__DATE__[1] == 'a') && (__DATE__[2] == 'r')) ? 3 : 0
#define BUILD_MONTH_APR ((__DATE__[0] == 'A') && (__DATE__[1] == 'p')) ? 4 : 0
#define BUILD_MONTH_MAY ((__DATE__[0] == 'M') && (__DATE__[1] == 'a') && (__DATE__[2] == 'y')) ? 5 : 0
#define BUILD_MONTH_JUN ((__DATE__[0] == 'J') && (__DATE__[1] == 'u') && (__DATE__[2] == 'n')) ? 6 : 0
#define BUILD_MONTH_JUL ((__DATE__[0] == 'J') && (__DATE__[1] == 'u') && (__DATE__[2] == 'l')) ? 7 : 0
#define BUILD_MONTH_AUG ((__DATE__[0] == 'A') && (__DATE__[1] == 'u')) ? 8 : 0
#define BUILD_MONTH_SEP (__DATE__[0] == 'S') ? 9 : 0
#define BUILD_MONTH_OCT (__DATE__[0] == 'O') ? 10 : 0
#define BUILD_MONTH_NOV (__DATE__[0] == 'N') ? 11 : 0
#define BUILD_MONTH_DEC (__DATE__[0] == 'D') ? 12 : 0
#define BUILD_MONTH BUILD_MONTH_JAN | BUILD_MONTH_FEB | BUILD_MONTH_MAR | \
BUILD_MONTH_APR | BUILD_MONTH_MAY | BUILD_MONTH_JUN | \
BUILD_MONTH_JUL | BUILD_MONTH_AUG | BUILD_MONTH_SEP | \
BUILD_MONTH_OCT | BUILD_MONTH_NOV | BUILD_MONTH_DEC
// <DATE>
#define BUILD_DATE_0 ((__DATE__[4] == ' ') ? 0 : (__DATE__[4] - 0x30))
#define BUILD_DATE_1 (__DATE__[5] - 0x30)
#define BUILD_DATE ((BUILD_DATE_0 * 10) + BUILD_DATE_1)
// <YEAR>
#define BUILD_YEAR (((__DATE__[7] - 0x30) * 1000) + ((__DATE__[8] - 0x30) * 100) + \
((__DATE__[9] - 0x30) * 10) + ((__DATE__[10] - 0x30) * 1))
// Parse the __TIME__ predefined macro to generate time defaults:
// __TIME__ Format: HH:MM:SS (First number of each is padded by 0 if <10)
// <HOUR>
#define BUILD_HOUR_0 ((__TIME__[0] == ' ') ? 0 : (__TIME__[0] - 0x30))
#define BUILD_HOUR_1 (__TIME__[1] - 0x30)
#define BUILD_HOUR ((BUILD_HOUR_0 * 10) + BUILD_HOUR_1)
// <MINUTE>
#define BUILD_MINUTE_0 ((__TIME__[3] == ' ') ? 0 : (__TIME__[3] - 0x30))
#define BUILD_MINUTE_1 (__TIME__[4] - 0x30)
#define BUILD_MINUTE ((BUILD_MINUTE_0 * 10) + BUILD_MINUTE_1)
// <SECOND>
#define BUILD_SECOND_0 ((__TIME__[6] == ' ') ? 0 : (__TIME__[6] - 0x30))
#define BUILD_SECOND_1 (__TIME__[7] - 0x30)
#define BUILD_SECOND ((BUILD_SECOND_0 * 10) + BUILD_SECOND_1)
namespace pimoroni {
bool RV3028::init() {
if(interrupt != PIN_UNUSED) {
gpio_set_function(interrupt, GPIO_FUNC_SIO);
gpio_set_dir(interrupt, GPIO_IN);
gpio_pull_up(interrupt);
}
uint8_t chip_id = 0;
i2c->read_bytes(address, RV3028_ID, &chip_id, 1);
if(chip_id != (RV3028_CHIP_ID | RV3028_VERSION)) {
return false;
}
return true;
}
void RV3028::reset() {
set_bit(RV3028_CTRL2, CTRL2_RESET);
}
i2c_inst_t* RV3028::get_i2c() const {
return i2c->get_i2c();
}
int RV3028::get_sda() const {
return i2c->get_sda();
}
int RV3028::get_scl() const {
return i2c->get_scl();
}
int RV3028::get_int() const {
return interrupt;
}
bool RV3028::setup(bool set_24Hour, bool disable_TrickleCharge, bool set_LevelSwitchingMode) {
sleep_ms(1000);
if(set_24Hour) {
set_24_hour();
sleep_ms(1000);
}
if(disable_TrickleCharge) {
disable_trickle_charge();
sleep_ms(1000);
}
return ((set_LevelSwitchingMode ? set_backup_switchover_mode(3) : true) && write_register(RV3028_STATUS, 0x00));
}
bool RV3028::set_time(uint8_t sec, uint8_t min, uint8_t hour, uint8_t weekday, uint8_t date, uint8_t month, uint16_t year) {
times[TIME_SECONDS] = dec_to_bcd(sec);
times[TIME_MINUTES] = dec_to_bcd(min);
times[TIME_HOURS] = dec_to_bcd(hour);
times[TIME_WEEKDAY] = dec_to_bcd(weekday);
times[TIME_DATE] = dec_to_bcd(date);
times[TIME_MONTH] = dec_to_bcd(month);
times[TIME_YEAR] = dec_to_bcd(year - 2000);
bool status = false;
if(is_12_hour()) {
set_24_hour();
status = set_time(times, TIME_ARRAY_LENGTH);
set_12_hour();
}
else {
status = set_time(times, TIME_ARRAY_LENGTH);
}
return status;
}
// setTime -- Set time and date/day registers of RV3028 (using data array)
bool RV3028::set_time(uint8_t * time, uint8_t len) {
if(len != TIME_ARRAY_LENGTH)
return false;
return write_multiple_registers(RV3028_SECONDS, time, len);
}
bool RV3028::set_seconds(uint8_t value) {
times[TIME_SECONDS] = dec_to_bcd(value);
return set_time(times, TIME_ARRAY_LENGTH);
}
bool RV3028::set_minutes(uint8_t value) {
times[TIME_MINUTES] = dec_to_bcd(value);
return set_time(times, TIME_ARRAY_LENGTH);
}
bool RV3028::set_hours(uint8_t value) {
times[TIME_HOURS] = dec_to_bcd(value);
return set_time(times, TIME_ARRAY_LENGTH);
}
bool RV3028::set_weekday(uint8_t value) {
times[TIME_WEEKDAY] = dec_to_bcd(value);
return set_time(times, TIME_ARRAY_LENGTH);
}
bool RV3028::set_date(uint8_t value) {
times[TIME_DATE] = dec_to_bcd(value);
return set_time(times, TIME_ARRAY_LENGTH);
}
bool RV3028::set_month(uint8_t value) {
times[TIME_MONTH] = dec_to_bcd(value);
return set_time(times, TIME_ARRAY_LENGTH);
}
bool RV3028::set_year(uint16_t value) {
times[TIME_YEAR] = dec_to_bcd(value - 2000);
return set_time(times, TIME_ARRAY_LENGTH);
}
// Takes the time from the last build and uses it as the current time
bool RV3028::set_to_compiler_time() {
times[TIME_SECONDS] = dec_to_bcd(BUILD_SECOND);
times[TIME_MINUTES] = dec_to_bcd(BUILD_MINUTE);
times[TIME_HOURS] = dec_to_bcd(BUILD_HOUR);
// Build_Hour is 0-23, convert to 1-12 if needed
if(is_12_hour()) {
uint8_t hour = BUILD_HOUR;
bool pm = false;
if(hour == 0)
hour += 12;
else if(hour == 12)
pm = true;
else if(hour > 12) {
hour -= 12;
pm = true;
}
times[TIME_HOURS] = dec_to_bcd(hour); // Load the modified hours
if(pm == true)
times[TIME_HOURS] |= (1 << HOURS_AM_PM); // Set AM/PM bit if needed
}
// Calculate weekday (from here: http://stackoverflow.com/a/21235587)
// 0 = Sunday, 6 = Saturday
uint16_t d = BUILD_DATE;
uint16_t m = BUILD_MONTH;
uint16_t y = BUILD_YEAR;
uint16_t weekday = (d += m < 3 ? y-- : y - 2, 23 * m / 9 + d + 4 + y / 4 - y / 100 + y / 400) % 7 + 1;
times[TIME_WEEKDAY] = dec_to_bcd(weekday);
times[TIME_DATE] = dec_to_bcd(BUILD_DATE);
times[TIME_MONTH] = dec_to_bcd(BUILD_MONTH);
times[TIME_YEAR] = dec_to_bcd(BUILD_YEAR - 2000); // ! Not Y2K (or Y2.1K)-proof :(
return set_time(times, TIME_ARRAY_LENGTH);
}
// Move the hours, mins, sec, etc registers from RV-3028-C7 into the _time array
// Needs to be called before printing time or date
// We do not protect the GPx registers. They will be overwritten. The user has plenty of RAM if they need it.
bool RV3028::update_time() {
if(read_multiple_registers(RV3028_SECONDS, times, TIME_ARRAY_LENGTH) == false)
return false; // Something went wrong
if(is_12_hour())
times[TIME_HOURS] &= ~(1 << HOURS_AM_PM); // Remove this bit from value
return true;
}
// Returns a pointer to array of chars that are the date in mm/dd/yyyy format because they're weird
char* RV3028::string_date_usa() {
static char date[11 + 3]; // Max of mm/dd/yyyy with \0 terminator (plus extra for worst case conversion)
sprintf(date, "%02hhu/%02hhu/20%02hhu", bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_YEAR]));
return date;
}
// Returns a pointer to array of chars that are the date in dd/mm/yyyy format
char* RV3028::string_date() {
static char date[11 + 3]; // Max of dd/mm/yyyy with \0 terminator (plus extra for worst case conversion)
sprintf(date, "%02hhu/%02hhu/20%02hhu", bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_YEAR]));
return date;
}
// Returns a pointer to array of chars that represents the time in hh:mm:ss format
// Adds AM/PM if in 12 hour mode
char* RV3028::string_time() {
static char time[11 + 3]; // Max of hh:mm:ssXM with \0 terminator (plus extra for worst case conversion)
if(is_12_hour() == true) {
char half = 'A';
if(is_pm()) half = 'P';
sprintf(time, "%02hhu:%02hhu:%02hhu%cM", bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS]), half);
}
else
sprintf(time, "%02hhu:%02hhu:%02hhu", bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS]));
return time;
}
char* RV3028::string_time_stamp() {
static char time_stamp[25 + 4]; // Max of yyyy-mm-ddThh:mm:ss.ss with \0 terminator (plus extra for worst case conversion)
if(is_12_hour() == true) {
char half = 'A';
if(is_pm()) half = 'P';
sprintf(time_stamp, "20%02hhu-%02hhu-%02hhu %02hhu:%02hhu:%02hhu%cM", bcd_to_dec(times[TIME_YEAR]), bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS]), half);
}
else
sprintf(time_stamp, "20%02hhu-%02hhu-%02hhu %02hhu:%02hhu:%02hhu", bcd_to_dec(times[TIME_YEAR]), bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS]));
return time_stamp;
}
uint8_t RV3028::get_seconds() {
return bcd_to_dec(times[TIME_SECONDS]);
}
uint8_t RV3028::get_minutes() {
return bcd_to_dec(times[TIME_MINUTES]);
}
uint8_t RV3028::get_hours() {
return bcd_to_dec(times[TIME_HOURS]);
}
uint8_t RV3028::get_weekday() {
return bcd_to_dec(times[TIME_WEEKDAY]);
}
uint8_t RV3028::get_date() {
return bcd_to_dec(times[TIME_DATE]);
}
uint8_t RV3028::get_month() {
return bcd_to_dec(times[TIME_MONTH]);
}
uint16_t RV3028::get_year() {
return bcd_to_dec(times[TIME_YEAR]) + 2000;
}
// Returns true if RTC has been configured for 12 hour mode
bool RV3028::is_12_hour() {
uint8_t controlRegister2 = read_register(RV3028_CTRL2);
return (controlRegister2 & (1 << CTRL2_12_24));
}
// Returns true if RTC has PM bit set and 12Hour bit set
bool RV3028::is_pm() {
uint8_t hourRegister = read_register(RV3028_HOURS);
if(is_12_hour() && (hourRegister & (1 << HOURS_AM_PM)))
return true;
return false;
}
// Configure RTC to output 1-12 hours
// Converts any current hour setting to 12 hour
void RV3028::set_12_hour() {
// Do we need to change anything?
if(is_12_hour() == false) {
uint8_t hour = bcd_to_dec(read_register(RV3028_HOURS)); // Get the current hour in the RTC
// Set the 12/24 hour bit
uint8_t setting = read_register(RV3028_CTRL2);
setting |= (1 << CTRL2_12_24);
write_register(RV3028_CTRL2, setting);
// Take the current hours and convert to 12, complete with AM/PM bit
bool pm = false;
if(hour == 0)
hour += 12;
else if(hour == 12)
pm = true;
else if(hour > 12) {
hour -= 12;
pm = true;
}
hour = dec_to_bcd(hour); // Convert to BCD
if(pm == true) hour |= (1 << HOURS_AM_PM); // Set AM/PM bit if needed
write_register(RV3028_HOURS, hour); // Record this to hours register
}
}
// Configure RTC to output 0-23 hours
// Converts any current hour setting to 24 hour
void RV3028::set_24_hour() {
// Do we need to change anything?
if(is_12_hour() == true) {
// Not sure what changing the CTRL2 register will do to hour register so let's get a copy
uint8_t hour = read_register(RV3028_HOURS); //Get the current 12 hour formatted time in BCD
bool pm = false;
if(hour & (1 << HOURS_AM_PM)) { // Is the AM/PM bit set?
pm = true;
hour &= ~(1 << HOURS_AM_PM); // Clear the bit
}
// Change to 24 hour mode
uint8_t setting = read_register(RV3028_CTRL2);
setting &= ~(1 << CTRL2_12_24); // Clear the 12/24 hr bit
write_register(RV3028_CTRL2, setting);
// Given a BCD hour in the 1-12 range, make it 24
hour = bcd_to_dec(hour); // Convert core of register to DEC
if(pm == true) hour += 12; // 2PM becomes 14
if(hour == 12) hour = 0; // 12AM stays 12, but should really be 0
if(hour == 24) hour = 12; // 12PM becomes 24, but should really be 12
hour = dec_to_bcd(hour); // Convert to BCD
write_register(RV3028_HOURS, hour); // Record this to hours register
}
}
// ATTENTION: Real Time and UNIX Time are INDEPENDENT!
bool RV3028::set_unix(uint32_t value) {
uint8_t unix_reg[4];
unix_reg[0] = value;
unix_reg[1] = value >> 8;
unix_reg[2] = value >> 16;
unix_reg[3] = value >> 24;
return write_multiple_registers(RV3028_UNIX_TIME0, unix_reg, 4);
}
// ATTENTION: Real Time and UNIX Time are INDEPENDENT!
uint32_t RV3028::get_unix() {
uint8_t unix_reg[4];
read_multiple_registers(RV3028_UNIX_TIME0, unix_reg, 4);
return ((uint32_t)unix_reg[3] << 24) | ((uint32_t)unix_reg[2] << 16) | ((uint32_t)unix_reg[1] << 8) | unix_reg[0];
}
/*********************************
Set the alarm mode in the following way:
0: When minutes, hours and weekday/date match (once per weekday/date)
1: When hours and weekday/date match (once per weekday/date)
2: When minutes and weekday/date match (once per hour per weekday/date)
3: When weekday/date match (once per weekday/date)
4: When hours and minutes match (once per day)
5: When hours match (once per day)
6: When minutes match (once per hour)
7: All disabled <20> Default value
If you want to set a weekday alarm (setWeekdayAlarm_not_Date = true), set 'date_or_weekday' from 0 (Sunday) to 6 (Saturday)
********************************/
void RV3028::enable_alarm_interrupt(uint8_t min, uint8_t hour, uint8_t date_or_weekday, bool set_weekday_alarm_not_date, uint8_t mode, bool enable_clock_output) {
// disable Alarm Interrupt to prevent accidental interrupts during configuration
disable_alarm_interrupt();
clear_alarm_interrupt_flag();
// ENHANCEMENT: Add Alarm in 12 hour mode
set_24_hour();
// Set WADA bit (Weekday/Date Alarm)
if(set_weekday_alarm_not_date)
clear_bit(RV3028_CTRL1, CTRL1_WADA);
else
set_bit(RV3028_CTRL1, CTRL1_WADA);
// Write alarm settings in registers 0x07 to 0x09
uint8_t alarmTime[3];
alarmTime[0] = dec_to_bcd(min); //minutes
alarmTime[1] = dec_to_bcd(hour); //hours
alarmTime[2] = dec_to_bcd(date_or_weekday); //date or weekday
// shift alarm enable bits
if(mode > 0b111)
mode = 0b111; // 0 to 7 is valid
if(mode & 0b001)
alarmTime[0] |= 1 << MINUTESALM_AE_M;
if(mode & 0b010)
alarmTime[1] |= 1 << HOURSALM_AE_H;
if(mode & 0b100)
alarmTime[2] |= 1 << DATE_AE_WD;
write_multiple_registers(RV3028_MINUTES_ALM, alarmTime, 3);
enable_alarm_interrupt();
// Clock output?
if(enable_clock_output)
set_bit(RV3028_INT_MASK, IMT_MASK_CAIE);
else
clear_bit(RV3028_INT_MASK, IMT_MASK_CAIE);
}
void RV3028::enable_alarm_interrupt() {
set_bit(RV3028_CTRL2, CTRL2_AIE);
}
// Only disables the interrupt (not the alarm flag)
void RV3028::disable_alarm_interrupt() {
clear_bit(RV3028_CTRL2, CTRL2_AIE);
}
bool RV3028::read_alarm_interrupt_flag() {
return read_bit(RV3028_STATUS, STATUS_AF);
}
void RV3028::clear_alarm_interrupt_flag() {
clear_bit(RV3028_STATUS, STATUS_AF);
}
/*********************************
Countdown Timer Interrupt
********************************/
void RV3028::set_timer(bool timer_repeat, uint16_t timer_frequency, uint16_t timer_value, bool set_interrupt, bool start_timer, bool enable_clock_output) {
disable_timer();
disable_timer_interrupt();
clear_timer_interrupt_flag();
write_register(RV3028_TIMERVAL_0, timer_value & 0xff);
write_register(RV3028_TIMERVAL_1, timer_value >> 8);
uint8_t ctrl1_val = read_register(RV3028_CTRL1);
if(timer_repeat) {
ctrl1_val |= 1 << CTRL1_TRPT;
}
else {
ctrl1_val &= ~(1 << CTRL1_TRPT);
}
switch(timer_frequency) {
case 4096: // 4096Hz (default) // up to 122us error on first time
ctrl1_val &= ~3; // Clear both the bits
break;
case 64: // 64Hz // up to 7.813ms error on first time
ctrl1_val &= ~3; // Clear both the bits
ctrl1_val |= 1;
break;
case 1: // 1Hz // up to 7.813ms error on first time
ctrl1_val &= ~3; // Clear both the bits
ctrl1_val |= 2;
break;
case 60000: // 1/60Hz // up to 7.813ms error on first time
ctrl1_val |= 3; // Set both bits
break;
}
if(set_interrupt) {
enable_timer_interrupt();
}
if(start_timer) {
ctrl1_val |= (1 << CTRL1_TE);
}
write_register(RV3028_CTRL1, ctrl1_val);
// Clock output?
if(enable_clock_output)
set_bit(RV3028_INT_MASK, IMT_MASK_CTIE);
else
clear_bit(RV3028_INT_MASK, IMT_MASK_CTIE);
}
uint16_t RV3028::get_timer_count() {
// Reads the number of remaining timer ticks
uint8_t r0 = read_register(RV3028_TIMERSTAT_0);
return (r0 + (read_register(RV3028_TIMERSTAT_1) << 8));
}
void RV3028::enable_timer_interrupt() {
set_bit(RV3028_CTRL2, CTRL2_TIE);
}
void RV3028::disable_timer_interrupt() {
clear_bit(RV3028_CTRL2, CTRL2_TIE);
}
bool RV3028::read_timer_interrupt_flag() {
return read_bit(RV3028_STATUS, STATUS_TF);
}
void RV3028::clear_timer_interrupt_flag() {
clear_bit(RV3028_STATUS, STATUS_TF);
}
void RV3028::enable_timer() {
set_bit(RV3028_CTRL1, CTRL1_TE);
}
void RV3028::disable_timer() {
clear_bit(RV3028_CTRL1, CTRL1_TE);
}
/*********************************
Periodic Time Update Interrupt
********************************/
void RV3028::enable_periodic_update_interrupt(bool every_second, bool enable_clock_output) {
disable_periodic_update_interrupt();
clear_periodic_update_interrupt_flag();
if(every_second)
clear_bit(RV3028_CTRL1, CTRL1_USEL);
else // every minute
set_bit(RV3028_CTRL1, CTRL1_USEL);
set_bit(RV3028_CTRL2, CTRL2_UIE);
// Clock output?
if(enable_clock_output)
set_bit(RV3028_INT_MASK, IMT_MASK_CUIE);
else
clear_bit(RV3028_INT_MASK, IMT_MASK_CUIE);
}
void RV3028::disable_periodic_update_interrupt() {
clear_bit(RV3028_CTRL2, CTRL2_UIE);
}
bool RV3028::read_periodic_update_interrupt_flag() {
return read_bit(RV3028_STATUS, STATUS_UF);
}
void RV3028::clear_periodic_update_interrupt_flag() {
clear_bit(RV3028_STATUS, STATUS_UF);
}
/*********************************
Enable the Trickle Charger and set the Trickle Charge series resistor (default is 15k)
TCR_3K = 3kOhm
TCR_5K = 5kOhm
TCR_9K = 9kOhm
TCR_15K = 15kOhm
*********************************/
void RV3028::enable_trickle_charge(uint8_t tcr) {
if(tcr > 3)
return;
// Read EEPROM Backup Register (0x37)
uint8_t eeprom_backup = read_config_eeprom_ram_mirror(EEPROM_Backup_Register);
// Set TCR Bits (Trickle Charge Resistor)
eeprom_backup &= EEPROMBackup_TCR_CLEAR; // Clear TCR Bits
eeprom_backup |= tcr << EEPROMBackup_TCR_SHIFT; // Shift values into EEPROM Backup Register
// Write 1 to TCE Bit
eeprom_backup |= 1 << EEPROMBackup_TCE_BIT;
// Write EEPROM Backup Register
write_config_eeprom_ram_mirror(EEPROM_Backup_Register, eeprom_backup);
}
void RV3028::disable_trickle_charge() {
// Read EEPROM Backup Register (0x37)
uint8_t eeprom_backup = read_config_eeprom_ram_mirror(EEPROM_Backup_Register);
// Write 0 to TCE Bit
eeprom_backup &= ~(1 << EEPROMBackup_TCE_BIT);
// Write EEPROM Backup Register
write_config_eeprom_ram_mirror(EEPROM_Backup_Register, eeprom_backup);
}
/*********************************
0 = Switchover disabled
1 = Direct Switching Mode
2 = Standby Mode
3 = Level Switching Mode
*********************************/
bool RV3028::set_backup_switchover_mode(uint8_t val) {
if(val > 3)
return false;
bool success = true;
// Read EEPROM Backup Register (0x37)
uint8_t eeprom_backup = read_config_eeprom_ram_mirror(EEPROM_Backup_Register);
if(eeprom_backup == 0xFF)
success = false;
// Ensure FEDE Bit is set to 1
eeprom_backup |= 1 << EEPROMBackup_FEDE_BIT;
// Set BSM Bits (Backup Switchover Mode)
eeprom_backup &= EEPROMBackup_BSM_CLEAR; // Clear BSM Bits of EEPROM Backup Register
eeprom_backup |= val << EEPROMBackup_BSM_SHIFT; // Shift values into EEPROM Backup Register
// Write EEPROM Backup Register
if(!write_config_eeprom_ram_mirror(EEPROM_Backup_Register, eeprom_backup))
success = false;
return success;
}
/*********************************
Clock Out functions
********************************/
void RV3028::enable_clock_out(uint8_t freq) {
if(freq > 7)
return; // check out of bounds
// Read EEPROM CLKOUT Register (0x35)
uint8_t eeprom_clkout = read_config_eeprom_ram_mirror(EEPROM_Clkout_Register);
// Ensure CLKOE Bit is set to 1
eeprom_clkout |= 1 << EEPROMClkout_CLKOE_BIT;
// Shift values into EEPROM Backup Register
eeprom_clkout |= freq << EEPROMClkout_FREQ_SHIFT;
// Write EEPROM Backup Register
write_config_eeprom_ram_mirror(EEPROM_Clkout_Register, eeprom_clkout);
}
void RV3028::enable_interrupt_controlled_clockout(uint8_t freq) {
if(freq > 7)
return; // check out of bounds
// Read EEPROM CLKOUT Register (0x35)
uint8_t eeprom_clkout = read_config_eeprom_ram_mirror(EEPROM_Clkout_Register);
// Shift values into EEPROM Backup Register
eeprom_clkout |= freq << EEPROMClkout_FREQ_SHIFT;
// Write EEPROM Backup Register
write_config_eeprom_ram_mirror(EEPROM_Clkout_Register, eeprom_clkout);
// Set CLKIE Bit
set_bit(RV3028_CTRL2, CTRL2_CLKIE);
}
void RV3028::disable_clock_out() {
// Read EEPROM CLKOUT Register (0x35)
uint8_t eeprom_clkout = read_config_eeprom_ram_mirror(EEPROM_Clkout_Register);
// Clear CLKOE Bit
eeprom_clkout &= ~(1 << EEPROMClkout_CLKOE_BIT);
// Write EEPROM CLKOUT Register
write_config_eeprom_ram_mirror(EEPROM_Clkout_Register, eeprom_clkout);
// Clear CLKIE Bit
clear_bit(RV3028_CTRL2, CTRL2_CLKIE);
}
bool RV3028::read_clock_output_interrupt_flag() {
return read_bit(RV3028_STATUS, STATUS_CLKF);
}
void RV3028::clear_clock_output_interrupt_flag() {
clear_bit(RV3028_STATUS, STATUS_CLKF);
}
// Returns the status byte
uint8_t RV3028::status(void) {
return read_register(RV3028_STATUS);
}
void RV3028::clear_interrupts() { // Read the status register to clear the current interrupt flags
write_register(RV3028_STATUS, 0);
}
/*********************************
FOR INTERNAL USE
********************************/
uint8_t RV3028::bcd_to_dec(uint8_t val) {
return ((val / 0x10) * 10) + (val % 0x10);
}
// BCDtoDEC -- convert decimal to binary-coded decimal (BCD)
uint8_t RV3028::dec_to_bcd(uint8_t val) {
return ((val / 10) * 0x10) + (val % 10);
}
uint8_t RV3028::read_register(uint8_t addr) {
uint8_t b1[2];
if(1 == i2c->read_bytes(address, addr, b1, 1))
return b1[0];
else
return 0xFF; //Error
}
bool RV3028::write_register(uint8_t addr, uint8_t val) {
uint8_t b1[2];
b1[0] = val;
b1[1] = 0;
return i2c->write_bytes(address, addr, b1, 1);
}
bool RV3028::read_multiple_registers(uint8_t addr, uint8_t *dest, uint8_t len) {
return i2c->read_bytes(address, addr, dest, len);
}
bool RV3028::write_multiple_registers(uint8_t addr, uint8_t *values, uint8_t len) {
return i2c->write_bytes(address, addr, values, len);
}
bool RV3028::write_config_eeprom_ram_mirror(uint8_t eeprom_addr, uint8_t val) {
bool success = wait_for_eeprom();
// Disable auto refresh by writing 1 to EERD control bit in CTRL1 register
uint8_t ctrl1 = read_register(RV3028_CTRL1);
ctrl1 |= 1 << CTRL1_EERD;
if(!write_register(RV3028_CTRL1, ctrl1))
success = false;
// Write Configuration RAM Register
write_register(eeprom_addr, val);
// Update EEPROM (All Configuration RAM -> EEPROM)
write_register(RV3028_EEPROM_CMD, EEPROMCMD_First);
write_register(RV3028_EEPROM_CMD, EEPROMCMD_Update);
if(!wait_for_eeprom())
success = false;
// Reenable auto refresh by writing 0 to EERD control bit in CTRL1 register
ctrl1 = read_register(RV3028_CTRL1);
if(ctrl1 == 0x00)
success = false;
ctrl1 &= ~(1 << CTRL1_EERD);
write_register(RV3028_CTRL1, ctrl1);
if(!wait_for_eeprom())
success = false;
return success;
}
uint8_t RV3028::read_config_eeprom_ram_mirror(uint8_t eeprom_addr) {
bool success = wait_for_eeprom();
// Disable auto refresh by writing 1 to EERD control bit in CTRL1 register
uint8_t ctrl1 = read_register(RV3028_CTRL1);
ctrl1 |= 1 << CTRL1_EERD;
if(!write_register(RV3028_CTRL1, ctrl1))
success = false;
// Read EEPROM Register
write_register(RV3028_EEPROM_ADDR, eeprom_addr);
write_register(RV3028_EEPROM_CMD, EEPROMCMD_First);
write_register(RV3028_EEPROM_CMD, EEPROMCMD_ReadSingle);
if(!wait_for_eeprom())
success = false;
uint8_t eeprom_data = read_register(RV3028_EEPROM_DATA);
if(!wait_for_eeprom())
success = false;
// Reenable auto refresh by writing 0 to EERD control bit in CTRL1 register
ctrl1 = read_register(RV3028_CTRL1);
if(ctrl1 == 0x00)
success = false;
ctrl1 &= ~(1 << CTRL1_EERD);
write_register(RV3028_CTRL1, ctrl1);
if(!success)
return 0xFF;
return eeprom_data;
}
// True if success, false if timeout occured
bool RV3028::wait_for_eeprom() {
// Timeout is number of loops round while - don't have access to millisecond counter
unsigned long timeout = 500;
while ((read_register(RV3028_STATUS) & 1 << STATUS_EEBUSY) && --timeout > 0);
return timeout > 0;
}
void RV3028::set_bit(uint8_t reg_addr, uint8_t bit_num) {
i2c->set_bits(address, reg_addr, bit_num, 0x01);
}
void RV3028::clear_bit(uint8_t reg_addr, uint8_t bit_num) {
i2c->clear_bits(address, reg_addr, bit_num, 0x01);
}
bool RV3028::read_bit(uint8_t reg_addr, uint8_t bit_num) {
uint8_t value = i2c->get_bits(address, reg_addr, bit_num, 0x01);
return value;
}
}