/****************************************************************************** rv3028.cpp Based on RV-3028-C7 Arduino Library by Constantin Koch, July 25, 2019 https://github.com/constiko/RV-3028_C7-Arduino_Library This code is released under the [MIT License](http://opensource.org/licenses/MIT). Please review the LICENSE file included with this example. Distributed as-is; no warranty is given. ******************************************************************************/ #include "rv3028.hpp" //****************************************************************************// // // Settings and configuration // //****************************************************************************// // Parse the __DATE__ predefined macro to generate date defaults: // __Date__ Format: MMM DD YYYY (First D may be a space if <10) // #define BUILD_MONTH_JAN ((__DATE__[0] == 'J') && (__DATE__[1] == 'a')) ? 1 : 0 #define BUILD_MONTH_FEB (__DATE__[0] == 'F') ? 2 : 0 #define BUILD_MONTH_MAR ((__DATE__[0] == 'M') && (__DATE__[1] == 'a') && (__DATE__[2] == 'r')) ? 3 : 0 #define BUILD_MONTH_APR ((__DATE__[0] == 'A') && (__DATE__[1] == 'p')) ? 4 : 0 #define BUILD_MONTH_MAY ((__DATE__[0] == 'M') && (__DATE__[1] == 'a') && (__DATE__[2] == 'y')) ? 5 : 0 #define BUILD_MONTH_JUN ((__DATE__[0] == 'J') && (__DATE__[1] == 'u') && (__DATE__[2] == 'n')) ? 6 : 0 #define BUILD_MONTH_JUL ((__DATE__[0] == 'J') && (__DATE__[1] == 'u') && (__DATE__[2] == 'l')) ? 7 : 0 #define BUILD_MONTH_AUG ((__DATE__[0] == 'A') && (__DATE__[1] == 'u')) ? 8 : 0 #define BUILD_MONTH_SEP (__DATE__[0] == 'S') ? 9 : 0 #define BUILD_MONTH_OCT (__DATE__[0] == 'O') ? 10 : 0 #define BUILD_MONTH_NOV (__DATE__[0] == 'N') ? 11 : 0 #define BUILD_MONTH_DEC (__DATE__[0] == 'D') ? 12 : 0 #define BUILD_MONTH BUILD_MONTH_JAN | BUILD_MONTH_FEB | BUILD_MONTH_MAR | \ BUILD_MONTH_APR | BUILD_MONTH_MAY | BUILD_MONTH_JUN | \ BUILD_MONTH_JUL | BUILD_MONTH_AUG | BUILD_MONTH_SEP | \ BUILD_MONTH_OCT | BUILD_MONTH_NOV | BUILD_MONTH_DEC // #define BUILD_DATE_0 ((__DATE__[4] == ' ') ? 0 : (__DATE__[4] - 0x30)) #define BUILD_DATE_1 (__DATE__[5] - 0x30) #define BUILD_DATE ((BUILD_DATE_0 * 10) + BUILD_DATE_1) // #define BUILD_YEAR (((__DATE__[7] - 0x30) * 1000) + ((__DATE__[8] - 0x30) * 100) + \ ((__DATE__[9] - 0x30) * 10) + ((__DATE__[10] - 0x30) * 1)) // Parse the __TIME__ predefined macro to generate time defaults: // __TIME__ Format: HH:MM:SS (First number of each is padded by 0 if <10) // #define BUILD_HOUR_0 ((__TIME__[0] == ' ') ? 0 : (__TIME__[0] - 0x30)) #define BUILD_HOUR_1 (__TIME__[1] - 0x30) #define BUILD_HOUR ((BUILD_HOUR_0 * 10) + BUILD_HOUR_1) // #define BUILD_MINUTE_0 ((__TIME__[3] == ' ') ? 0 : (__TIME__[3] - 0x30)) #define BUILD_MINUTE_1 (__TIME__[4] - 0x30) #define BUILD_MINUTE ((BUILD_MINUTE_0 * 10) + BUILD_MINUTE_1) // #define BUILD_SECOND_0 ((__TIME__[6] == ' ') ? 0 : (__TIME__[6] - 0x30)) #define BUILD_SECOND_1 (__TIME__[7] - 0x30) #define BUILD_SECOND ((BUILD_SECOND_0 * 10) + BUILD_SECOND_1) namespace pimoroni { bool RV3028::init() { if(interrupt != PIN_UNUSED) { gpio_set_function(interrupt, GPIO_FUNC_SIO); gpio_set_dir(interrupt, GPIO_IN); gpio_pull_up(interrupt); } uint8_t chip_id = 0; i2c->read_bytes(address, RV3028_ID, &chip_id, 1); if(chip_id != (RV3028_CHIP_ID | RV3028_VERSION)) { return false; } return true; } void RV3028::reset() { set_bit(RV3028_CTRL2, CTRL2_RESET); } i2c_inst_t* RV3028::get_i2c() const { return i2c->get_i2c(); } int RV3028::get_sda() const { return i2c->get_sda(); } int RV3028::get_scl() const { return i2c->get_scl(); } int RV3028::get_int() const { return interrupt; } bool RV3028::setup(bool set_24Hour, bool disable_TrickleCharge, bool set_LevelSwitchingMode) { sleep_ms(1000); if(set_24Hour) { set_24_hour(); sleep_ms(1000); } if(disable_TrickleCharge) { disable_trickle_charge(); sleep_ms(1000); } return ((set_LevelSwitchingMode ? set_backup_switchover_mode(3) : true) && write_register(RV3028_STATUS, 0x00)); } bool RV3028::set_time(uint8_t sec, uint8_t min, uint8_t hour, uint8_t weekday, uint8_t date, uint8_t month, uint16_t year) { times[TIME_SECONDS] = dec_to_bcd(sec); times[TIME_MINUTES] = dec_to_bcd(min); times[TIME_HOURS] = dec_to_bcd(hour); times[TIME_WEEKDAY] = dec_to_bcd(weekday); times[TIME_DATE] = dec_to_bcd(date); times[TIME_MONTH] = dec_to_bcd(month); times[TIME_YEAR] = dec_to_bcd(year - 2000); bool status = false; if(is_12_hour()) { set_24_hour(); status = set_time(times, TIME_ARRAY_LENGTH); set_12_hour(); } else { status = set_time(times, TIME_ARRAY_LENGTH); } return status; } // setTime -- Set time and date/day registers of RV3028 (using data array) bool RV3028::set_time(uint8_t * time, uint8_t len) { if(len != TIME_ARRAY_LENGTH) return false; return write_multiple_registers(RV3028_SECONDS, time, len); } bool RV3028::set_seconds(uint8_t value) { times[TIME_SECONDS] = dec_to_bcd(value); return set_time(times, TIME_ARRAY_LENGTH); } bool RV3028::set_minutes(uint8_t value) { times[TIME_MINUTES] = dec_to_bcd(value); return set_time(times, TIME_ARRAY_LENGTH); } bool RV3028::set_hours(uint8_t value) { times[TIME_HOURS] = dec_to_bcd(value); return set_time(times, TIME_ARRAY_LENGTH); } bool RV3028::set_weekday(uint8_t value) { times[TIME_WEEKDAY] = dec_to_bcd(value); return set_time(times, TIME_ARRAY_LENGTH); } bool RV3028::set_date(uint8_t value) { times[TIME_DATE] = dec_to_bcd(value); return set_time(times, TIME_ARRAY_LENGTH); } bool RV3028::set_month(uint8_t value) { times[TIME_MONTH] = dec_to_bcd(value); return set_time(times, TIME_ARRAY_LENGTH); } bool RV3028::set_year(uint16_t value) { times[TIME_YEAR] = dec_to_bcd(value - 2000); return set_time(times, TIME_ARRAY_LENGTH); } // Takes the time from the last build and uses it as the current time bool RV3028::set_to_compiler_time() { times[TIME_SECONDS] = dec_to_bcd(BUILD_SECOND); times[TIME_MINUTES] = dec_to_bcd(BUILD_MINUTE); times[TIME_HOURS] = dec_to_bcd(BUILD_HOUR); // Build_Hour is 0-23, convert to 1-12 if needed if(is_12_hour()) { uint8_t hour = BUILD_HOUR; bool pm = false; if(hour == 0) hour += 12; else if(hour == 12) pm = true; else if(hour > 12) { hour -= 12; pm = true; } times[TIME_HOURS] = dec_to_bcd(hour); // Load the modified hours if(pm == true) times[TIME_HOURS] |= (1 << HOURS_AM_PM); // Set AM/PM bit if needed } // Calculate weekday (from here: http://stackoverflow.com/a/21235587) // 0 = Sunday, 6 = Saturday uint16_t d = BUILD_DATE; uint16_t m = BUILD_MONTH; uint16_t y = BUILD_YEAR; uint16_t weekday = (d += m < 3 ? y-- : y - 2, 23 * m / 9 + d + 4 + y / 4 - y / 100 + y / 400) % 7 + 1; times[TIME_WEEKDAY] = dec_to_bcd(weekday); times[TIME_DATE] = dec_to_bcd(BUILD_DATE); times[TIME_MONTH] = dec_to_bcd(BUILD_MONTH); times[TIME_YEAR] = dec_to_bcd(BUILD_YEAR - 2000); // ! Not Y2K (or Y2.1K)-proof :( return set_time(times, TIME_ARRAY_LENGTH); } // Move the hours, mins, sec, etc registers from RV-3028-C7 into the _time array // Needs to be called before printing time or date // We do not protect the GPx registers. They will be overwritten. The user has plenty of RAM if they need it. bool RV3028::update_time() { if(read_multiple_registers(RV3028_SECONDS, times, TIME_ARRAY_LENGTH) == false) return false; // Something went wrong if(is_12_hour()) times[TIME_HOURS] &= ~(1 << HOURS_AM_PM); // Remove this bit from value return true; } // Returns a pointer to array of chars that are the date in mm/dd/yyyy format because they're weird char* RV3028::string_date_usa() { static char date[11 + 3]; // Max of mm/dd/yyyy with \0 terminator (plus extra for worst case conversion) sprintf(date, "%02hhu/%02hhu/20%02hhu", bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_YEAR])); return date; } // Returns a pointer to array of chars that are the date in dd/mm/yyyy format char* RV3028::string_date() { static char date[11 + 3]; // Max of dd/mm/yyyy with \0 terminator (plus extra for worst case conversion) sprintf(date, "%02hhu/%02hhu/20%02hhu", bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_YEAR])); return date; } // Returns a pointer to array of chars that represents the time in hh:mm:ss format // Adds AM/PM if in 12 hour mode char* RV3028::string_time() { static char time[11 + 3]; // Max of hh:mm:ssXM with \0 terminator (plus extra for worst case conversion) if(is_12_hour() == true) { char half = 'A'; if(is_pm()) half = 'P'; sprintf(time, "%02hhu:%02hhu:%02hhu%cM", bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS]), half); } else sprintf(time, "%02hhu:%02hhu:%02hhu", bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS])); return time; } char* RV3028::string_time_stamp() { static char time_stamp[25 + 4]; // Max of yyyy-mm-ddThh:mm:ss.ss with \0 terminator (plus extra for worst case conversion) if(is_12_hour() == true) { char half = 'A'; if(is_pm()) half = 'P'; sprintf(time_stamp, "20%02hhu-%02hhu-%02hhu %02hhu:%02hhu:%02hhu%cM", bcd_to_dec(times[TIME_YEAR]), bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS]), half); } else sprintf(time_stamp, "20%02hhu-%02hhu-%02hhu %02hhu:%02hhu:%02hhu", bcd_to_dec(times[TIME_YEAR]), bcd_to_dec(times[TIME_MONTH]), bcd_to_dec(times[TIME_DATE]), bcd_to_dec(times[TIME_HOURS]), bcd_to_dec(times[TIME_MINUTES]), bcd_to_dec(times[TIME_SECONDS])); return time_stamp; } uint8_t RV3028::get_seconds() { return bcd_to_dec(times[TIME_SECONDS]); } uint8_t RV3028::get_minutes() { return bcd_to_dec(times[TIME_MINUTES]); } uint8_t RV3028::get_hours() { return bcd_to_dec(times[TIME_HOURS]); } uint8_t RV3028::get_weekday() { return bcd_to_dec(times[TIME_WEEKDAY]); } uint8_t RV3028::get_date() { return bcd_to_dec(times[TIME_DATE]); } uint8_t RV3028::get_month() { return bcd_to_dec(times[TIME_MONTH]); } uint16_t RV3028::get_year() { return bcd_to_dec(times[TIME_YEAR]) + 2000; } // Returns true if RTC has been configured for 12 hour mode bool RV3028::is_12_hour() { uint8_t controlRegister2 = read_register(RV3028_CTRL2); return (controlRegister2 & (1 << CTRL2_12_24)); } // Returns true if RTC has PM bit set and 12Hour bit set bool RV3028::is_pm() { uint8_t hourRegister = read_register(RV3028_HOURS); if(is_12_hour() && (hourRegister & (1 << HOURS_AM_PM))) return true; return false; } // Configure RTC to output 1-12 hours // Converts any current hour setting to 12 hour void RV3028::set_12_hour() { // Do we need to change anything? if(is_12_hour() == false) { uint8_t hour = bcd_to_dec(read_register(RV3028_HOURS)); // Get the current hour in the RTC // Set the 12/24 hour bit uint8_t setting = read_register(RV3028_CTRL2); setting |= (1 << CTRL2_12_24); write_register(RV3028_CTRL2, setting); // Take the current hours and convert to 12, complete with AM/PM bit bool pm = false; if(hour == 0) hour += 12; else if(hour == 12) pm = true; else if(hour > 12) { hour -= 12; pm = true; } hour = dec_to_bcd(hour); // Convert to BCD if(pm == true) hour |= (1 << HOURS_AM_PM); // Set AM/PM bit if needed write_register(RV3028_HOURS, hour); // Record this to hours register } } // Configure RTC to output 0-23 hours // Converts any current hour setting to 24 hour void RV3028::set_24_hour() { // Do we need to change anything? if(is_12_hour() == true) { // Not sure what changing the CTRL2 register will do to hour register so let's get a copy uint8_t hour = read_register(RV3028_HOURS); //Get the current 12 hour formatted time in BCD bool pm = false; if(hour & (1 << HOURS_AM_PM)) { // Is the AM/PM bit set? pm = true; hour &= ~(1 << HOURS_AM_PM); // Clear the bit } // Change to 24 hour mode uint8_t setting = read_register(RV3028_CTRL2); setting &= ~(1 << CTRL2_12_24); // Clear the 12/24 hr bit write_register(RV3028_CTRL2, setting); // Given a BCD hour in the 1-12 range, make it 24 hour = bcd_to_dec(hour); // Convert core of register to DEC if(pm == true) hour += 12; // 2PM becomes 14 if(hour == 12) hour = 0; // 12AM stays 12, but should really be 0 if(hour == 24) hour = 12; // 12PM becomes 24, but should really be 12 hour = dec_to_bcd(hour); // Convert to BCD write_register(RV3028_HOURS, hour); // Record this to hours register } } // ATTENTION: Real Time and UNIX Time are INDEPENDENT! bool RV3028::set_unix(uint32_t value) { uint8_t unix_reg[4]; unix_reg[0] = value; unix_reg[1] = value >> 8; unix_reg[2] = value >> 16; unix_reg[3] = value >> 24; return write_multiple_registers(RV3028_UNIX_TIME0, unix_reg, 4); } // ATTENTION: Real Time and UNIX Time are INDEPENDENT! uint32_t RV3028::get_unix() { uint8_t unix_reg[4]; read_multiple_registers(RV3028_UNIX_TIME0, unix_reg, 4); return ((uint32_t)unix_reg[3] << 24) | ((uint32_t)unix_reg[2] << 16) | ((uint32_t)unix_reg[1] << 8) | unix_reg[0]; } /********************************* Set the alarm mode in the following way: 0: When minutes, hours and weekday/date match (once per weekday/date) 1: When hours and weekday/date match (once per weekday/date) 2: When minutes and weekday/date match (once per hour per weekday/date) 3: When weekday/date match (once per weekday/date) 4: When hours and minutes match (once per day) 5: When hours match (once per day) 6: When minutes match (once per hour) 7: All disabled � Default value If you want to set a weekday alarm (setWeekdayAlarm_not_Date = true), set 'date_or_weekday' from 0 (Sunday) to 6 (Saturday) ********************************/ void RV3028::enable_alarm_interrupt(uint8_t min, uint8_t hour, uint8_t date_or_weekday, bool set_weekday_alarm_not_date, uint8_t mode, bool enable_clock_output) { // disable Alarm Interrupt to prevent accidental interrupts during configuration disable_alarm_interrupt(); clear_alarm_interrupt_flag(); // ENHANCEMENT: Add Alarm in 12 hour mode set_24_hour(); // Set WADA bit (Weekday/Date Alarm) if(set_weekday_alarm_not_date) clear_bit(RV3028_CTRL1, CTRL1_WADA); else set_bit(RV3028_CTRL1, CTRL1_WADA); // Write alarm settings in registers 0x07 to 0x09 uint8_t alarmTime[3]; alarmTime[0] = dec_to_bcd(min); //minutes alarmTime[1] = dec_to_bcd(hour); //hours alarmTime[2] = dec_to_bcd(date_or_weekday); //date or weekday // shift alarm enable bits if(mode > 0b111) mode = 0b111; // 0 to 7 is valid if(mode & 0b001) alarmTime[0] |= 1 << MINUTESALM_AE_M; if(mode & 0b010) alarmTime[1] |= 1 << HOURSALM_AE_H; if(mode & 0b100) alarmTime[2] |= 1 << DATE_AE_WD; write_multiple_registers(RV3028_MINUTES_ALM, alarmTime, 3); enable_alarm_interrupt(); // Clock output? if(enable_clock_output) set_bit(RV3028_INT_MASK, IMT_MASK_CAIE); else clear_bit(RV3028_INT_MASK, IMT_MASK_CAIE); } void RV3028::enable_alarm_interrupt() { set_bit(RV3028_CTRL2, CTRL2_AIE); } // Only disables the interrupt (not the alarm flag) void RV3028::disable_alarm_interrupt() { clear_bit(RV3028_CTRL2, CTRL2_AIE); } bool RV3028::read_alarm_interrupt_flag() { return read_bit(RV3028_STATUS, STATUS_AF); } void RV3028::clear_alarm_interrupt_flag() { clear_bit(RV3028_STATUS, STATUS_AF); } /********************************* Countdown Timer Interrupt ********************************/ void RV3028::set_timer(bool timer_repeat, uint16_t timer_frequency, uint16_t timer_value, bool set_interrupt, bool start_timer, bool enable_clock_output) { disable_timer(); disable_timer_interrupt(); clear_timer_interrupt_flag(); write_register(RV3028_TIMERVAL_0, timer_value & 0xff); write_register(RV3028_TIMERVAL_1, timer_value >> 8); uint8_t ctrl1_val = read_register(RV3028_CTRL1); if(timer_repeat) { ctrl1_val |= 1 << CTRL1_TRPT; } else { ctrl1_val &= ~(1 << CTRL1_TRPT); } switch(timer_frequency) { case 4096: // 4096Hz (default) // up to 122us error on first time ctrl1_val &= ~3; // Clear both the bits break; case 64: // 64Hz // up to 7.813ms error on first time ctrl1_val &= ~3; // Clear both the bits ctrl1_val |= 1; break; case 1: // 1Hz // up to 7.813ms error on first time ctrl1_val &= ~3; // Clear both the bits ctrl1_val |= 2; break; case 60000: // 1/60Hz // up to 7.813ms error on first time ctrl1_val |= 3; // Set both bits break; } if(set_interrupt) { enable_timer_interrupt(); } if(start_timer) { ctrl1_val |= (1 << CTRL1_TE); } write_register(RV3028_CTRL1, ctrl1_val); // Clock output? if(enable_clock_output) set_bit(RV3028_INT_MASK, IMT_MASK_CTIE); else clear_bit(RV3028_INT_MASK, IMT_MASK_CTIE); } uint16_t RV3028::get_timer_count() { // Reads the number of remaining timer ticks uint8_t r0 = read_register(RV3028_TIMERSTAT_0); return (r0 + (read_register(RV3028_TIMERSTAT_1) << 8)); } void RV3028::enable_timer_interrupt() { set_bit(RV3028_CTRL2, CTRL2_TIE); } void RV3028::disable_timer_interrupt() { clear_bit(RV3028_CTRL2, CTRL2_TIE); } bool RV3028::read_timer_interrupt_flag() { return read_bit(RV3028_STATUS, STATUS_TF); } void RV3028::clear_timer_interrupt_flag() { clear_bit(RV3028_STATUS, STATUS_TF); } void RV3028::enable_timer() { set_bit(RV3028_CTRL1, CTRL1_TE); } void RV3028::disable_timer() { clear_bit(RV3028_CTRL1, CTRL1_TE); } /********************************* Periodic Time Update Interrupt ********************************/ void RV3028::enable_periodic_update_interrupt(bool every_second, bool enable_clock_output) { disable_periodic_update_interrupt(); clear_periodic_update_interrupt_flag(); if(every_second) clear_bit(RV3028_CTRL1, CTRL1_USEL); else // every minute set_bit(RV3028_CTRL1, CTRL1_USEL); set_bit(RV3028_CTRL2, CTRL2_UIE); // Clock output? if(enable_clock_output) set_bit(RV3028_INT_MASK, IMT_MASK_CUIE); else clear_bit(RV3028_INT_MASK, IMT_MASK_CUIE); } void RV3028::disable_periodic_update_interrupt() { clear_bit(RV3028_CTRL2, CTRL2_UIE); } bool RV3028::read_periodic_update_interrupt_flag() { return read_bit(RV3028_STATUS, STATUS_UF); } void RV3028::clear_periodic_update_interrupt_flag() { clear_bit(RV3028_STATUS, STATUS_UF); } /********************************* Enable the Trickle Charger and set the Trickle Charge series resistor (default is 15k) TCR_3K = 3kOhm TCR_5K = 5kOhm TCR_9K = 9kOhm TCR_15K = 15kOhm *********************************/ void RV3028::enable_trickle_charge(uint8_t tcr) { if(tcr > 3) return; // Read EEPROM Backup Register (0x37) uint8_t eeprom_backup = read_config_eeprom_ram_mirror(EEPROM_Backup_Register); // Set TCR Bits (Trickle Charge Resistor) eeprom_backup &= EEPROMBackup_TCR_CLEAR; // Clear TCR Bits eeprom_backup |= tcr << EEPROMBackup_TCR_SHIFT; // Shift values into EEPROM Backup Register // Write 1 to TCE Bit eeprom_backup |= 1 << EEPROMBackup_TCE_BIT; // Write EEPROM Backup Register write_config_eeprom_ram_mirror(EEPROM_Backup_Register, eeprom_backup); } void RV3028::disable_trickle_charge() { // Read EEPROM Backup Register (0x37) uint8_t eeprom_backup = read_config_eeprom_ram_mirror(EEPROM_Backup_Register); // Write 0 to TCE Bit eeprom_backup &= ~(1 << EEPROMBackup_TCE_BIT); // Write EEPROM Backup Register write_config_eeprom_ram_mirror(EEPROM_Backup_Register, eeprom_backup); } /********************************* 0 = Switchover disabled 1 = Direct Switching Mode 2 = Standby Mode 3 = Level Switching Mode *********************************/ bool RV3028::set_backup_switchover_mode(uint8_t val) { if(val > 3) return false; bool success = true; // Read EEPROM Backup Register (0x37) uint8_t eeprom_backup = read_config_eeprom_ram_mirror(EEPROM_Backup_Register); if(eeprom_backup == 0xFF) success = false; // Ensure FEDE Bit is set to 1 eeprom_backup |= 1 << EEPROMBackup_FEDE_BIT; // Set BSM Bits (Backup Switchover Mode) eeprom_backup &= EEPROMBackup_BSM_CLEAR; // Clear BSM Bits of EEPROM Backup Register eeprom_backup |= val << EEPROMBackup_BSM_SHIFT; // Shift values into EEPROM Backup Register // Write EEPROM Backup Register if(!write_config_eeprom_ram_mirror(EEPROM_Backup_Register, eeprom_backup)) success = false; return success; } /********************************* Clock Out functions ********************************/ void RV3028::enable_clock_out(uint8_t freq) { if(freq > 7) return; // check out of bounds // Read EEPROM CLKOUT Register (0x35) uint8_t eeprom_clkout = read_config_eeprom_ram_mirror(EEPROM_Clkout_Register); // Ensure CLKOE Bit is set to 1 eeprom_clkout |= 1 << EEPROMClkout_CLKOE_BIT; // Shift values into EEPROM Backup Register eeprom_clkout |= freq << EEPROMClkout_FREQ_SHIFT; // Write EEPROM Backup Register write_config_eeprom_ram_mirror(EEPROM_Clkout_Register, eeprom_clkout); } void RV3028::enable_interrupt_controlled_clockout(uint8_t freq) { if(freq > 7) return; // check out of bounds // Read EEPROM CLKOUT Register (0x35) uint8_t eeprom_clkout = read_config_eeprom_ram_mirror(EEPROM_Clkout_Register); // Shift values into EEPROM Backup Register eeprom_clkout |= freq << EEPROMClkout_FREQ_SHIFT; // Write EEPROM Backup Register write_config_eeprom_ram_mirror(EEPROM_Clkout_Register, eeprom_clkout); // Set CLKIE Bit set_bit(RV3028_CTRL2, CTRL2_CLKIE); } void RV3028::disable_clock_out() { // Read EEPROM CLKOUT Register (0x35) uint8_t eeprom_clkout = read_config_eeprom_ram_mirror(EEPROM_Clkout_Register); // Clear CLKOE Bit eeprom_clkout &= ~(1 << EEPROMClkout_CLKOE_BIT); // Write EEPROM CLKOUT Register write_config_eeprom_ram_mirror(EEPROM_Clkout_Register, eeprom_clkout); // Clear CLKIE Bit clear_bit(RV3028_CTRL2, CTRL2_CLKIE); } bool RV3028::read_clock_output_interrupt_flag() { return read_bit(RV3028_STATUS, STATUS_CLKF); } void RV3028::clear_clock_output_interrupt_flag() { clear_bit(RV3028_STATUS, STATUS_CLKF); } // Returns the status byte uint8_t RV3028::status(void) { return read_register(RV3028_STATUS); } void RV3028::clear_interrupts() { // Read the status register to clear the current interrupt flags write_register(RV3028_STATUS, 0); } /********************************* FOR INTERNAL USE ********************************/ uint8_t RV3028::bcd_to_dec(uint8_t val) { return ((val / 0x10) * 10) + (val % 0x10); } // BCDtoDEC -- convert decimal to binary-coded decimal (BCD) uint8_t RV3028::dec_to_bcd(uint8_t val) { return ((val / 10) * 0x10) + (val % 10); } uint8_t RV3028::read_register(uint8_t addr) { uint8_t b1[2]; if(1 == i2c->read_bytes(address, addr, b1, 1)) return b1[0]; else return 0xFF; //Error } bool RV3028::write_register(uint8_t addr, uint8_t val) { uint8_t b1[2]; b1[0] = val; b1[1] = 0; return i2c->write_bytes(address, addr, b1, 1); } bool RV3028::read_multiple_registers(uint8_t addr, uint8_t *dest, uint8_t len) { return i2c->read_bytes(address, addr, dest, len); } bool RV3028::write_multiple_registers(uint8_t addr, uint8_t *values, uint8_t len) { return i2c->write_bytes(address, addr, values, len); } bool RV3028::write_config_eeprom_ram_mirror(uint8_t eeprom_addr, uint8_t val) { bool success = wait_for_eeprom(); // Disable auto refresh by writing 1 to EERD control bit in CTRL1 register uint8_t ctrl1 = read_register(RV3028_CTRL1); ctrl1 |= 1 << CTRL1_EERD; if(!write_register(RV3028_CTRL1, ctrl1)) success = false; // Write Configuration RAM Register write_register(eeprom_addr, val); // Update EEPROM (All Configuration RAM -> EEPROM) write_register(RV3028_EEPROM_CMD, EEPROMCMD_First); write_register(RV3028_EEPROM_CMD, EEPROMCMD_Update); if(!wait_for_eeprom()) success = false; // Reenable auto refresh by writing 0 to EERD control bit in CTRL1 register ctrl1 = read_register(RV3028_CTRL1); if(ctrl1 == 0x00) success = false; ctrl1 &= ~(1 << CTRL1_EERD); write_register(RV3028_CTRL1, ctrl1); if(!wait_for_eeprom()) success = false; return success; } uint8_t RV3028::read_config_eeprom_ram_mirror(uint8_t eeprom_addr) { bool success = wait_for_eeprom(); // Disable auto refresh by writing 1 to EERD control bit in CTRL1 register uint8_t ctrl1 = read_register(RV3028_CTRL1); ctrl1 |= 1 << CTRL1_EERD; if(!write_register(RV3028_CTRL1, ctrl1)) success = false; // Read EEPROM Register write_register(RV3028_EEPROM_ADDR, eeprom_addr); write_register(RV3028_EEPROM_CMD, EEPROMCMD_First); write_register(RV3028_EEPROM_CMD, EEPROMCMD_ReadSingle); if(!wait_for_eeprom()) success = false; uint8_t eeprom_data = read_register(RV3028_EEPROM_DATA); if(!wait_for_eeprom()) success = false; // Reenable auto refresh by writing 0 to EERD control bit in CTRL1 register ctrl1 = read_register(RV3028_CTRL1); if(ctrl1 == 0x00) success = false; ctrl1 &= ~(1 << CTRL1_EERD); write_register(RV3028_CTRL1, ctrl1); if(!success) return 0xFF; return eeprom_data; } // True if success, false if timeout occured bool RV3028::wait_for_eeprom() { // Timeout is number of loops round while - don't have access to millisecond counter unsigned long timeout = 500; while ((read_register(RV3028_STATUS) & 1 << STATUS_EEBUSY) && --timeout > 0); return timeout > 0; } void RV3028::set_bit(uint8_t reg_addr, uint8_t bit_num) { i2c->set_bits(address, reg_addr, bit_num, 0x01); } void RV3028::clear_bit(uint8_t reg_addr, uint8_t bit_num) { i2c->clear_bits(address, reg_addr, bit_num, 0x01); } bool RV3028::read_bit(uint8_t reg_addr, uint8_t bit_num) { uint8_t value = i2c->get_bits(address, reg_addr, bit_num, 0x01); return value; } }