kopia lustrzana https://github.com/animator/learn-python
71 wiersze
3.4 KiB
Markdown
71 wiersze
3.4 KiB
Markdown
## Confusion Matrix
|
|
|
|
A confusion matrix is a fundamental performance evaluation tool used in machine learning to assess the accuracy of a classification model. It is an N x N matrix, where N represents the number of target classes.
|
|
|
|
For binary classification, it results in a 2 x 2 matrix that outlines four key parameters:
|
|
1. True Positive (TP) - The predicted value matches the actual value, or the predicted class matches the actual class.
|
|
For example - the actual value was positive, and the model predicted a positive value.
|
|
2. True Negative (TN) - The predicted value matches the actual value, or the predicted class matches the actual class.
|
|
For example - the actual value was negative, and the model predicted a negative value.
|
|
3. False Positive (FP)/Type I Error - The predicted value was falsely predicted.
|
|
For example - the actual value was negative, but the model predicted a positive value.
|
|
4. False Negative (FN)/Type II Error - The predicted value was falsely predicted.
|
|
For example - the actual value was positive, but the model predicted a negative value.
|
|
|
|
The confusion matrix enables the calculation of various metrics like accuracy, precision, recall, F1-Score and specificity.
|
|
1. Accuracy - It represents the proportion of correctly classified instances out of the total number of instances in the dataset.
|
|
2. Precision - It quantifies the accuracy of positive predictions made by the model.
|
|
3. Recall - It quantifies the ability of a model to correctly identify all positive instances in the dataset and is also known as sensitivity or true positive rate.
|
|
4. F1-Score - It is a single measure that combines precision and recall, offering a balanced evaluation of a classification model's effectiveness.
|
|
|
|
To implement the confusion matrix in Python, we can use the confusion_matrix() function from the sklearn.metrics module of the scikit-learn library.
|
|
The function returns a 2D array that represents the confusion matrix.
|
|
We can also visualize the confusion matrix using a heatmap.
|
|
|
|
```python
|
|
# Import necessary libraries
|
|
import numpy as np
|
|
from sklearn.metrics import confusion_matrix, classification_report
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Create the NumPy array for actual and predicted labels
|
|
actual = np.array(['Apple', 'Apple', 'Apple', 'Not Apple', 'Apple',
|
|
'Not Apple', 'Apple', 'Apple', 'Not Apple', 'Not Apple'])
|
|
predicted = np.array(['Apple', 'Not Apple', 'Apple', 'Not Apple', 'Apple',
|
|
'Apple', 'Apple', 'Apple', 'Not Apple', 'Not Apple'])
|
|
|
|
# Compute the confusion matrix
|
|
cm = confusion_matrix(actual,predicted)
|
|
|
|
# Plot the confusion matrix with the help of the seaborn heatmap
|
|
sns.heatmap(cm,
|
|
annot=True,
|
|
fmt='g',
|
|
xticklabels=['Apple', 'Not Apple'],
|
|
yticklabels=['Apple', 'Not Apple'])
|
|
plt.xlabel('Prediction', fontsize=13)
|
|
plt.ylabel('Actual', fontsize=13)
|
|
plt.title('Confusion Matrix', fontsize=17)
|
|
plt.show()
|
|
|
|
# Classifications Report based on Confusion Metrics
|
|
print(classification_report(actual, predicted))
|
|
```
|
|
|
|
### Results
|
|
|
|
```
|
|
1. Confusion Matrix:
|
|
[[5 1]
|
|
[1 3]]
|
|
2. Classification Report:
|
|
precision recall f1-score support
|
|
Apple 0.83 0.83 0.83 6
|
|
Not Apple 0.75 0.75 0.75 4
|
|
|
|
accuracy 0.80 10
|
|
macro avg 0.79 0.79 0.79 10
|
|
weighted avg 0.80 0.80 0.80 10
|
|
```
|