kopia lustrzana https://github.com/animator/learn-python
3.4 KiB
3.4 KiB
Confusion Matrix
A confusion matrix is a fundamental performance evaluation tool used in machine learning to assess the accuracy of a classification model. It is an N x N matrix, where N represents the number of target classes.
For binary classification, it results in a 2 x 2 matrix that outlines four key parameters:
- True Positive (TP) - The predicted value matches the actual value, or the predicted class matches the actual class. For example - the actual value was positive, and the model predicted a positive value.
- True Negative (TN) - The predicted value matches the actual value, or the predicted class matches the actual class. For example - the actual value was negative, and the model predicted a negative value.
- False Positive (FP)/Type I Error - The predicted value was falsely predicted. For example - the actual value was negative, but the model predicted a positive value.
- False Negative (FN)/Type II Error - The predicted value was falsely predicted. For example - the actual value was positive, but the model predicted a negative value.
The confusion matrix enables the calculation of various metrics like accuracy, precision, recall, F1-Score and specificity.
- Accuracy - It represents the proportion of correctly classified instances out of the total number of instances in the dataset.
- Precision - It quantifies the accuracy of positive predictions made by the model.
- Recall - It quantifies the ability of a model to correctly identify all positive instances in the dataset and is also known as sensitivity or true positive rate.
- F1-Score - It is a single measure that combines precision and recall, offering a balanced evaluation of a classification model's effectiveness.
To implement the confusion matrix in Python, we can use the confusion_matrix() function from the sklearn.metrics module of the scikit-learn library. The function returns a 2D array that represents the confusion matrix. We can also visualize the confusion matrix using a heatmap.
# Import necessary libraries
import numpy as np
from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
import matplotlib.pyplot as plt
# Create the NumPy array for actual and predicted labels
actual = np.array(['Apple', 'Apple', 'Apple', 'Not Apple', 'Apple',
'Not Apple', 'Apple', 'Apple', 'Not Apple', 'Not Apple'])
predicted = np.array(['Apple', 'Not Apple', 'Apple', 'Not Apple', 'Apple',
'Apple', 'Apple', 'Apple', 'Not Apple', 'Not Apple'])
# Compute the confusion matrix
cm = confusion_matrix(actual,predicted)
# Plot the confusion matrix with the help of the seaborn heatmap
sns.heatmap(cm,
annot=True,
fmt='g',
xticklabels=['Apple', 'Not Apple'],
yticklabels=['Apple', 'Not Apple'])
plt.xlabel('Prediction', fontsize=13)
plt.ylabel('Actual', fontsize=13)
plt.title('Confusion Matrix', fontsize=17)
plt.show()
# Classifications Report based on Confusion Metrics
print(classification_report(actual, predicted))
Results
1. Confusion Matrix:
[[5 1]
[1 3]]
2. Classification Report:
precision recall f1-score support
Apple 0.83 0.83 0.83 6
Not Apple 0.75 0.75 0.75 4
accuracy 0.80 10
macro avg 0.79 0.79 0.79 10
weighted avg 0.80 0.80 0.80 10