Intention is to partition the demo into multiple files, so that the
main program is quite easy to follow.
1. connectlib.c: For any URL parsing and TCP connection related stuff
2. sh2lib.c: Convenience functions for HTTP2+TLS. The goal here is to
expose a simpler API than nghttp2. If most usecases end up being
served with this library, it could potentially be moved into a separate
component
This commit reverts the revert on the new task watchdog API. It also
fixes the following bug which caused the reversion.
- sdkconfig TASK_WDT_TIMEOUT_S has been reverted from the unit of ms back to the
unit of seconds. Fixes bug where projects using the new API without rebuilding sdkconfig
would cause the old default value of 5 to be interpreted in ms.
This commit also adds the following features to the task watchdog
- Updated idle hook registration to be compatible with dual core hooks
- Updated dual core hooks to support deregistration for cpu
- Legacy mode has been removed and esp_task_wdt_feed() is now replaced by
esp_task_wdt_reset(). esp_task_wdt_feed() is deprecated
- Idle hooks to reset are now registered/deregistered when the idle tasks are
added/deleted from the Task Watchdog instead of at Task Watchdog init/deinit
- Updated example
component/bt: The application layer does not allocate memory correctly causing the btc layer pointer to cross the border.
bt/examples: Change the gattc_multi_connect.c incorrect memory apply method.
Reported from different sources from github or bbs:
https://github.com/espressif/esp-idf/issues/680https://github.com/espressif/esp-idf/issues/922
We tested reading several sensor or other I2C slave devices, if the power and SDA/SCL wires are in proper condition, everything works find with reading the slave.
If we remove the power supply for the slave during I2C is reading, or directly connect SDA or SCL to ground, this would cause the I2C FSM get stuck in wrong state, all we can do is the reset the I2C hardware in this case.
After this commit, no matter whether the power supply of I2C slave is removed or SDA / SCL are shorted to ground, the driver can recover from wrong state.
We are not sure whether this the save issue with the reported one yet, but to make the driver more robust.
Further information:
1. For I2C master mode, we have tested different situations, e.g., to short the SDA/SCL directly to GND/VCC, to short the SDA to SCL, to un-plug the slave device, to power off the slave device. Under all of those situations, this version of driver can recover and keep working.
2. Some slave device will die by accident and keep the SDA in low level, in this case, master should send several clock to make the slave release the bus.
3. Slave mode of ESP32 might also get in wrong state that held the SDA low, in this case, master device could send a stop signal to make esp32 slave release the bus.
Modifications:
1. Disable I2C_MASTER_TRAN_COMP interrupt to void extra interrupt.
2. Disable un-used timeout interrupt for slave.
3. Add bus reset if error detected for master mode.
4. Add bus clear if SDA level is low when error detected.
5. Modify the argument type of i2c_set_pin.
6. add API to set timeout value
7. add parameter check for timing APIs
Some development boards do not have sufficient external pull-ups on
SD card pins. Most notably, if high level on GPIO13 is not registered
by the card when GO_IDLE_STATE command is received, the card will enter
SPI mode and further communication will not be possible, until power to
the card is toggled.
This change enables internal pull-ups on SD card pins in an attempt to
make this initialization process more reliable.