esp-idf/components/esp32/include/esp_phy_init.h

262 wiersze
14 KiB
C
Czysty Zwykły widok Historia

2016-11-15 10:36:18 +00:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
2016-11-15 10:36:18 +00:00
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file PHY init parameters and API
*/
/**
* @brief Structure holding PHY init parameters
*/
2016-11-15 10:36:18 +00:00
typedef struct {
uint8_t param_ver_id; /*!< init_data structure version */
uint8_t crystal_select; /*!< 0: 40MHz, 1: 26 MHz, 2: 24 MHz, 3: auto */
uint8_t wifi_rx_gain_swp_step_1; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_2; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_3; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_4; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_5; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_6; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_7; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_8; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_9; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_10; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_11; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_12; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_13; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_14; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_15; /*!< do not change */
uint8_t bt_rx_gain_swp_step_1; /*!< do not change */
uint8_t bt_rx_gain_swp_step_2; /*!< do not change */
uint8_t bt_rx_gain_swp_step_3; /*!< do not change */
uint8_t bt_rx_gain_swp_step_4; /*!< do not change */
uint8_t bt_rx_gain_swp_step_5; /*!< do not change */
uint8_t bt_rx_gain_swp_step_6; /*!< do not change */
uint8_t bt_rx_gain_swp_step_7; /*!< do not change */
uint8_t bt_rx_gain_swp_step_8; /*!< do not change */
uint8_t bt_rx_gain_swp_step_9; /*!< do not change */
uint8_t bt_rx_gain_swp_step_10; /*!< do not change */
uint8_t bt_rx_gain_swp_step_11; /*!< do not change */
uint8_t bt_rx_gain_swp_step_12; /*!< do not change */
uint8_t bt_rx_gain_swp_step_13; /*!< do not change */
uint8_t bt_rx_gain_swp_step_14; /*!< do not change */
uint8_t bt_rx_gain_swp_step_15; /*!< do not change */
uint8_t gain_cmp_1; /*!< do not change */
uint8_t gain_cmp_6; /*!< do not change */
uint8_t gain_cmp_11; /*!< do not change */
uint8_t gain_cmp_ext2_1; /*!< do not change */
uint8_t gain_cmp_ext2_6; /*!< do not change */
uint8_t gain_cmp_ext2_11; /*!< do not change */
uint8_t gain_cmp_ext3_1; /*!< do not change */
uint8_t gain_cmp_ext3_6; /*!< do not change */
uint8_t gain_cmp_ext3_11; /*!< do not change */
uint8_t gain_cmp_bt_ofs_1; /*!< do not change */
uint8_t gain_cmp_bt_ofs_6; /*!< do not change */
uint8_t gain_cmp_bt_ofs_11; /*!< do not change */
uint8_t target_power_qdb_0; /*!< 78 means target power is 78/4=19.5dbm */
uint8_t target_power_qdb_1; /*!< 76 means target power is 76/4=19dbm */
uint8_t target_power_qdb_2; /*!< 74 means target power is 74/4=18.5dbm */
uint8_t target_power_qdb_3; /*!< 68 means target power is 68/4=17dbm */
uint8_t target_power_qdb_4; /*!< 64 means target power is 64/4=16dbm */
uint8_t target_power_qdb_5; /*!< 52 means target power is 52/4=13dbm */
uint8_t target_power_index_mcs0; /*!< target power index is 0, means target power is target_power_qdb_0 19.5dbm; (1m,2m,5.5m,11m,6m,9m) */
uint8_t target_power_index_mcs1; /*!< target power index is 0, means target power is target_power_qdb_0 19.5dbm; (12m) */
uint8_t target_power_index_mcs2; /*!< target power index is 1, means target power is target_power_qdb_1 19dbm; (18m) */
uint8_t target_power_index_mcs3; /*!< target power index is 1, means target power is target_power_qdb_1 19dbm; (24m) */
uint8_t target_power_index_mcs4; /*!< target power index is 2, means target power is target_power_qdb_2 18.5dbm; (36m) */
uint8_t target_power_index_mcs5; /*!< target power index is 3, means target power is target_power_qdb_3 17dbm; (48m) */
uint8_t target_power_index_mcs6; /*!< target power index is 4, means target power is target_power_qdb_4 16dbm; (54m) */
uint8_t target_power_index_mcs7; /*!< target power index is 5, means target power is target_power_qdb_5 13dbm */
uint8_t pwr_ind_11b_en; /*!< 0: 11b power is same as mcs0 and 6m, 1: 11b power different with OFDM */
uint8_t pwr_ind_11b_0; /*!< 1m, 2m power index [0~5] */
uint8_t pwr_ind_11b_1; /*!< 5.5m, 11m power index [0~5] */
uint8_t chan_backoff_en; /*!< 0: channel backoff disable, 1:channel backoff enable */
uint8_t chan1_power_backoff_qdb; /*!< 4 means backoff is 1db */
uint8_t chan2_power_backoff_qdb; /*!< see chan1_power_backoff_qdb */
uint8_t chan3_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan4_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan5_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan6_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan7_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan8_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan9_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan10_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan11_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan12_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan13_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan14_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan1_rate_backoff_index; /*!< if bit i is set, backoff data rate is target_power_qdb_i */
uint8_t chan2_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan3_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan4_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan5_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan6_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan7_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan8_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan9_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan10_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan11_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan12_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan13_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan14_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t spur_freq_cfg_msb_1; /*!< first spur: */
uint8_t spur_freq_cfg_1; /*!< spur_freq_cfg = (spur_freq_cfg_msb_1 <<8) | spur_freq_cfg_1 */
uint8_t spur_freq_cfg_div_1; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_1 */
uint8_t spur_freq_en_h_1; /*!< the seventh bit for total enable */
uint8_t spur_freq_en_l_1; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority */
uint8_t spur_freq_cfg_msb_2; /*!< second spur: */
uint8_t spur_freq_cfg_2; /*!< spur_freq_cfg = (spur_freq_cfg_msb_2 <<8) | spur_freq_cfg_2 */
uint8_t spur_freq_cfg_div_2; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_2 */
uint8_t spur_freq_en_h_2; /*!< the seventh bit for total enable */
uint8_t spur_freq_en_l_2; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority */
uint8_t spur_freq_cfg_msb_3; /*!< third spur: */
uint8_t spur_freq_cfg_3; /*!< spur_freq_cfg = (spur_freq_cfg_msb_3 <<8) | spur_freq_cfg_3 */
uint8_t spur_freq_cfg_div_3; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_3 */
uint8_t spur_freq_en_h_3; /*!< the seventh bit for total enable */
uint8_t spur_freq_en_l_3; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority, */
uint8_t reserved[23]; /*!< reserved for future expansion */
} esp_phy_init_data_t;
/**
* @brief Opaque PHY calibration data
*/
2016-11-15 10:36:18 +00:00
typedef struct {
uint8_t opaque[1904]; /*!< calibration data */
2016-11-15 10:36:18 +00:00
} esp_phy_calibration_data_t;
typedef enum {
PHY_RF_CAL_PARTIAL = 0x00000000, /*!< Do part of RF calibration. This should be used after power-on reset. */
PHY_RF_CAL_NONE = 0x00000001, /*!< Don't do any RF calibration. This mode is only suggested to be used after deep sleep reset. */
PHY_RF_CAL_FULL = 0x00000002 /*!< Do full RF calibration. Produces best results, but also consumes a lot of time and current. Suggested to be used once. */
} esp_phy_calibration_mode_t;
/**
* @brief Get PHY init data
*
* If "Use a partition to store PHY init data" option is set in menuconfig,
* This function will load PHY init data from a partition. Otherwise,
* PHY init data will be compiled into the application itself, and this function
* will return a pointer to PHY init data located in read-only memory (DROM).
2016-11-15 10:36:18 +00:00
*
* If "Use a partition to store PHY init data" option is enabled, this function
* may return NULL if the data loaded from flash is not valid.
*
* @note Call esp_phy_release_init_data to release the pointer obtained using
* this function after the call to esp_wifi_init.
*
* @return pointer to PHY init data structure
*/
const esp_phy_init_data_t* esp_phy_get_init_data();
/**
* @brief Release PHY init data
* @param data pointer to PHY init data structure obtained from
* esp_phy_get_init_data function
2016-11-15 10:36:18 +00:00
*/
void esp_phy_release_init_data(const esp_phy_init_data_t* data);
2016-11-15 10:36:18 +00:00
/**
* @brief Function called by esp_phy_init to load PHY calibration data
*
* This is a convenience function which can be used to load PHY calibration
* data from NVS. Data can be stored to NVS using esp_phy_store_cal_data_to_nvs
* function.
*
* If calibration data is not present in the NVS, or
* data is not valid (was obtained for a chip with a different MAC address,
* or obtained for a different version of software), this function will
* return an error.
*
* If "Initialize PHY in startup code" option is set in menuconfig, this
* function will be used to load calibration data. To provide a different
* mechanism for loading calibration data, disable
* "Initialize PHY in startup code" option in menuconfig and call esp_phy_init
* function from the application. For an example usage of esp_phy_init and
* this function, see esp_phy_store_cal_data_to_nvs function in cpu_start.c
*
* @param out_cal_data pointer to calibration data structure to be filled with
* loaded data.
* @return ESP_OK on success
*/
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data);
2016-11-15 10:36:18 +00:00
/**
* @brief Function called by esp_phy_init to store PHY calibration data
*
* This is a convenience function which can be used to store PHY calibration
* data to the NVS. Calibration data is returned by esp_phy_init function.
* Data saved using this function to the NVS can later be loaded using
* esp_phy_store_cal_data_to_nvs function.
2016-11-15 10:36:18 +00:00
*
* If "Initialize PHY in startup code" option is set in menuconfig, this
* function will be used to store calibration data. To provide a different
* mechanism for storing calibration data, disable
* "Initialize PHY in startup code" option in menuconfig and call esp_phy_init
* function from the application.
*
* @param cal_data pointer to calibration data which has to be saved.
* @return ESP_OK on success
2016-11-15 10:36:18 +00:00
*/
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data);
2016-11-15 10:36:18 +00:00
/**
* @brief Initialize PHY and RF module
*
* PHY and RF module should be initialized in order to use WiFi or BT.
* Now PHY and RF initializing job is done automatically when start WiFi or BT. Users should not
* call this API in their application.
2016-11-15 10:36:18 +00:00
*
* @param init_data PHY parameters. Default set of parameters can
* be obtained by calling esp_phy_get_default_init_data
* function.
* @param mode Calibration mode (Full, partial, or no calibration)
* @param[inout] calibration_data
* @param is_sleep WiFi wakes up from sleep or not
* @return ESP_OK on success.
* @return ESP_FAIL on fail.
2016-11-15 10:36:18 +00:00
*/
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data,
esp_phy_calibration_mode_t mode, esp_phy_calibration_data_t* calibration_data, bool is_sleep);
2016-11-15 10:36:18 +00:00
/**
* @brief De-initialize PHY and RF module
*
* PHY module should be de-initialized in order to shutdown WiFi or BT.
* Now PHY and RF de-initializing job is done automatically when stop WiFi or BT. Users should not
* call this API in their application.
*
* @return ESP_OK on success.
*/
esp_err_t esp_phy_rf_deinit(void);
/**
* @brief Load calibration data from NVS and initialize PHY and RF module
*/
void esp_phy_load_cal_and_init(void);
2016-11-15 10:36:18 +00:00
#ifdef __cplusplus
}
#endif