blendercam/scripts/addons/cam/nc/iso.py

1176 wiersze
48 KiB
Python

################################################################################
# iso.py
#
# Simple ISO NC code creator
#
# Hirutso Enni, 2009-01-13
from . import nc
import math
from .format import Format
from .format import *
################################################################################
class Creator(nc.Creator):
def __init__(self):
nc.Creator.__init__(self)
self.a = 0
self.b = 0
self.c = 0
self.f = Address('F', fmt = Format(number_of_decimal_places = 2))
self.fh = None
self.fv = None
self.fhv = False
self.g_plane = Address('G', fmt = Format(number_of_decimal_places = 0))
self.g_list = []
self.i = 0
self.j = 0
self.k = 0
self.m = []
self.n = 10
self.r = 0
self.s = AddressPlusMinus('S', fmt = Format(number_of_decimal_places = 2), modal = False)
self.t = None
self.x = 0
self.y = 0
self.z = 500
self.g0123_modal = False
self.drill_modal = False
self.prev_f = ''
self.prev_g0123 = ''
self.prev_drill = ''
self.prev_retract = ''
self.prev_z = ''
self.useCrc = False
self.useCrcCenterline = False
self.gCRC = ''
self.fmt = Format()
self.absolute_flag = True
self.ffmt = Format(number_of_decimal_places = 2)
self.sfmt = Format(number_of_decimal_places = 1)
self.arc_centre_absolute = False
self.arc_centre_positive = False
self.in_quadrant_splitting = False
self.machine_coordinates = False
self.drillExpanded = False
self.can_do_helical_arcs = True
self.shift_x = 0.0
self.shift_y = 0.0
self.shift_z = 0.0
############################################################################
## Codes
def SPACE(self): return('')
def FORMAT_FEEDRATE(self): return('%.2f')
def FORMAT_ANG(self): return('%.1f')
def FORMAT_TIME(self): return('%.2f')
def FORMAT_DWELL(self): return('P%f')
def BLOCK(self): return('N%i')
def COMMENT(self,comment): return( ('(%s)' % comment ) )
def VARIABLE(self): return( '#%i')
def VARIABLE_SET(self): return( '=%.3f')
def PROGRAM(self): return( 'O%i')
def PROGRAM_END(self): return( 'M02')
def SUBPROG_CALL(self): return( 'M98' + self.SPACE() + 'P%i')
def SUBPROG_END(self): return( 'M99')
def STOP_OPTIONAL(self): return('M01')
def STOP(self): return('M00')
def IMPERIAL(self): return('G20')
def METRIC(self): return('G21')
def ABSOLUTE(self): return('G90')
def INCREMENTAL(self): return('G91')
def SET_TEMPORARY_COORDINATE_SYSTEM(self): return('G92')
def REMOVE_TEMPORARY_COORDINATE_SYSTEM(self): return('G92.1')
def POLAR_ON(self): return('G16')
def POLAR_OFF(self): return('G15')
def PLANE_XY(self): return('17')
def PLANE_XZ(self): return('18')
def PLANE_YZ(self): return('19')
def TOOL(self): return('T%i' + self.SPACE() + 'M06')
def TOOL_DEFINITION(self): return('G10' + self.SPACE() + 'L1')
def WORKPLANE(self): return('G%i')
def WORKPLANE_BASE(self): return(53)
def SPINDLE_CW(self): return('M03')
def SPINDLE_CCW(self): return('M04')
def COOLANT_OFF(self): return('M09')
def COOLANT_MIST(self): return('M07')
def COOLANT_FLOOD(self): return('M08')
def GEAR_OFF(self): return('?')
def GEAR(self): return('M%i')
def GEAR_BASE(self): return(37)
def RAPID(self): return('G00')
def FEED(self): return('G01')
def ARC_CW(self): return('G02')
def ARC_CCW(self): return('G03')
def DWELL(self): return('G04')
def DRILL(self): return('G81')
def DRILL_WITH_DWELL(self, format, dwell): return('G82' + self.SPACE() + (format.string(dwell)))
def PECK_DRILL(self): return('G83')
def PECK_DEPTH(self, format, depth): return(self.SPACE() + 'Q' + (format.string(depth)))
def RETRACT(self, format, height): return(self.SPACE() + 'R' + (format.string(height)))
def END_CANNED_CYCLE(self): return('G80')
def TAP(self): return('G84')
def TAP_DEPTH(self, format, depth): return(self.SPACE() + 'K' + (format.string(depth)))
def X(self): return('X')
def Y(self): return('Y')
def Z(self): return('Z')
def A(self): return('A')
def B(self): return('B')
def C(self): return('C')
def CENTRE_X(self): return('I')
def CENTRE_Y(self): return('J')
def CENTRE_Z(self): return('K')
def RADIUS(self): return('R')
def TIME(self): return('P')
def PROBE_TOWARDS_WITH_SIGNAL(self): return('G38.2')
def PROBE_TOWARDS_WITHOUT_SIGNAL(self): return('G38.3')
def PROBE_AWAY_WITH_SIGNAL(self): return('G38.4')
def PROBE_AWAY_WITHOUT_SIGNAL(self): return('G38.5')
def MACHINE_COORDINATES(self): return('G53')
def EXACT_PATH_MODE(self): return('G61')
def EXACT_STOP_MODE(self): return('G61.1')
############################################################################
## Internals
def write_feedrate(self):
self.f.write(self)
def write_preps(self):
self.g_plane.write(self)
for g in self.g_list:
self.write(self.SPACE() + g)
self.g_list = []
def write_misc(self):
if (len(self.m)) : self.write(self.m.pop())
def write_blocknum(self):
self.write(self.BLOCK() % self.n)
self.n += 10
def write_spindle(self):
self.s.write(self)
############################################################################
## Programs
def program_begin(self, id, name=''):
self.write((self.PROGRAM() % id) + self.SPACE() + (self.COMMENT(name)))
self.write('\n')
def program_stop(self, optional=False):
self.write_blocknum()
if (optional) :
self.write(self.SPACE() + self.STOP_OPTIONAL() + '\n')
self.prev_g0123 = ''
else :
self.write(self.STOP() + '\n')
self.prev_g0123 = ''
def program_end(self):
self.write_blocknum()
self.write(self.SPACE() + self.PROGRAM_END() + '\n')
def flush_nc(self):
if len(self.g_list) == 0 and len(self.m) == 0: return
self.write_blocknum()
self.write_preps()
self.write_misc()
self.write('\n')
############################################################################
## Subprograms
def sub_begin(self, id, name=''):
self.write((self.PROGRAM() % id) + self.SPACE() + (self.COMMENT(name)))
self.write('\n')
def sub_call(self, id):
self.write_blocknum()
self.write(self.SPACE() + (self.SUBPROG_CALL() % id) + '\n')
def sub_end(self):
self.write_blocknum()
self.write(self.SPACE() + self.SUBPROG_END() + '\n')
############################################################################
## Settings
def imperial(self):
self.g_list.append(self.IMPERIAL())
self.fmt.number_of_decimal_places = 4
def metric(self):
self.g_list.append(self.METRIC())
self.fmt.number_of_decimal_places = 3
def absolute(self):
self.g_list.append(self.ABSOLUTE())
self.absolute_flag = True
def incremental(self):
self.g_list.append(self.INCREMENTAL())
self.absolute_flag = False
def polar(self, on=True):
if (on) : self.g_list.append(self.POLAR_ON())
else : self.g_list.append(self.POLAR_OFF())
def set_plane(self, plane):
if (plane == 0) : self.g_plane.set(self.PLANE_XY())
elif (plane == 1) : self.g_plane.set(self.PLANE_XZ())
elif (plane == 2) : self.g_plane.set(self.PLANE_YZ())
def set_temporary_origin(self, x=None, y=None, z=None, a=None, b=None, c=None):
self.write_blocknum()
self.write(self.SPACE() + (self.SET_TEMPORARY_COORDINATE_SYSTEM()))
if (x != None): self.write( self.SPACE() + 'X ' + (self.fmt.string(x + self.shift_x)) )
if (y != None): self.write( self.SPACE() + 'Y ' + (self.fmt.string(y + self.shift_y)) )
if (z != None): self.write( self.SPACE() + 'Z ' + (self.fmt.string(z + self.shift_z)) )
if (a != None): self.write( self.SPACE() + 'A ' + (self.fmt.string(a)) )
if (b != None): self.write( self.SPACE() + 'B ' + (self.fmt.string(b)) )
if (c != None): self.write( self.SPACE() + 'C ' + (self.fmt.string(c)) )
self.write('\n')
def remove_temporary_origin(self):
self.write_blocknum()
self.write(self.SPACE() + (self.REMOVE_TEMPORARY_COORDINATE_SYSTEM()))
self.write('\n')
############################################################################
## new graphics origin- make a new coordinate system and snap it onto the geometry
## the toolpath generated should be translated
def translate(self,x=None, y=None, z=None):
self.shift_x = -x
self.shift_y = -y
self.shift_z = -z
############################################################################
## Tools
def tool_change(self, id):
self.write_blocknum()
self.write(self.SPACE() + (self.TOOL() % id) + '\n')
self.t = id
def tool_defn(self, id, name='', radius=None, length=None, gradient=None):
self.write_blocknum()
self.write(self.SPACE() + self.TOOL_DEFINITION())
self.write(self.SPACE() + ('P%i' % id) + ' ')
if (radius != None):
self.write(self.SPACE() + ('R%.3f' % radius))
if (length != None):
self.write(self.SPACE() + 'Z%.3f' % length)
self.write('\n')
def offset_radius(self, id, radius=None):
pass
def offset_length(self, id, length=None):
pass
############################################################################
## Datums
def datum_shift(self, x=None, y=None, z=None, a=None, b=None, c=None):
pass
def datum_set(self, x=None, y=None, z=None, a=None, b=None, c=None):
pass
# This is the coordinate system we're using. G54->G59, G59.1, G59.2, G59.3
# These are selected by values from 1 to 9 inclusive.
def workplane(self, id):
if ((id >= 1) and (id <= 6)):
self.g_list.append(self.WORKPLANE() % (id + self.WORKPLANE_BASE()))
if ((id >= 7) and (id <= 9)):
self.g_list.append(((self.WORKPLANE() % (6 + self.WORKPLANE_BASE())) + ('.%i' % (id - 6))))
############################################################################
## Rates + Modes
def feedrate(self, f):
self.f.set(f)
self.fhv = False
def feedrate_hv(self, fh, fv):
self.fh = fh
self.fv = fv
self.fhv = True
def calc_feedrate_hv(self, h, v):
if math.fabs(v) > math.fabs(h * 2):
# some horizontal, so it should be fine to use the horizontal feed rate
self.f.set(self.fv)
else:
# not much, if any horizontal component, so use the vertical feed rate
self.f.set(self.fh)
def spindle(self, s, clockwise):
if clockwise == True:
self.s.set(s, self.SPACE() + self.SPINDLE_CW(), self.SPACE() + self.SPINDLE_CCW())
else:
self.s.set(s, self.SPACE() + self.SPINDLE_CCW(), self.SPACE() + self.SPINDLE_CW())
def coolant(self, mode=0):
if (mode <= 0) : self.m.append(self.SPACE() + self.COOLANT_OFF())
elif (mode == 1) : self.m.append(self.SPACE() + self.COOLANT_MIST())
elif (mode == 2) : self.m.append(self.SPACE() + self.COOLANT_FLOOD())
def gearrange(self, gear=0):
if (gear <= 0) : self.m.append(self.SPACE() + self.GEAR_OFF())
elif (gear <= 4) : self.m.append(self.SPACE() + self.GEAR() % (gear + GEAR_BASE()))
############################################################################
## Moves
def rapid(self, x=None, y=None, z=None, a=None, b=None, c=None, machine_coordinates=None ):
self.write_blocknum()
if self.machine_coordinates != False or (machine_coordinates != None and machine_coordinates == True):
self.write( self.MACHINE_COORDINATES() + self.SPACE() )
if self.g0123_modal:
if self.prev_g0123 != self.RAPID():
self.write(self.SPACE() + self.RAPID())
self.prev_g0123 = self.RAPID()
else:
self.write(self.SPACE() + self.RAPID())
self.write_preps()
if (x != None):
dx = x - self.x
if (self.absolute_flag ):
self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x)))
else:
self.write(self.SPACE() + self.X() + (self.fmt.string(dx)))
self.x = x
if (y != None):
dy = y - self.y
if (self.absolute_flag ):
self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y)))
else:
self.write(self.SPACE() + self.Y() + (self.fmt.string(dy)))
self.y = y
if (z != None):
dz = z - self.z
if (self.absolute_flag ):
self.write(self.SPACE() + self.Z() + (self.fmt.string(z + self.shift_z)))
else:
self.write(self.SPACE() + self.Z() + (self.fmt.string(dz)))
self.z = z
if (a != None):
da = a - self.a
if (self.absolute_flag ):
self.write(self.SPACE() + self.A() + (self.fmt.string(a)))
else:
self.write(self.SPACE() + self.A() + (self.fmt.string(da)))
self.a = a
if (b != None):
db = b - self.b
if (self.absolute_flag ):
self.write(self.SPACE() + self.B() + (self.fmt.string(b)))
else:
self.write(self.SPACE() + self.B() + (self.fmt.string(db)))
self.b = b
if (c != None):
dc = c - self.c
if (self.absolute_flag ):
self.write(self.SPACE() + self.C() + (self.fmt.string(c)))
else:
self.write(self.SPACE() + self.C() + (self.fmt.string(dc)))
self.c = c
self.write_spindle()
self.write_misc()
self.write('\n')
def feed(self, x=None, y=None, z=None, a=None, b=None, c=None):
if self.same_xyz(x, y, z): return
self.write_blocknum()
if self.g0123_modal:
if self.prev_g0123 != self.FEED():
self.write(self.SPACE() + self.FEED())
self.prev_g0123 = self.FEED()
else:
self.write(self.FEED())
self.write_preps()
dx = dy = dz = 0
if (x != None):
dx = x - self.x
if (self.absolute_flag ):
self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x)))
else:
self.write(self.SPACE() + self.X() + (self.fmt.string(dx)))
self.x = x
if (y != None):
dy = y - self.y
if (self.absolute_flag ):
self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y)))
else:
self.write(self.SPACE() + self.Y() + (self.fmt.string(dy)))
self.y = y
if (z != None):
dz = z - self.z
if (self.absolute_flag ):
self.write(self.SPACE() + self.Z() + (self.fmt.string(z + self.shift_z)))
else:
self.write(self.SPACE() + self.Z() + (self.fmt.string(dz)))
self.z = z
if (a != None):
da = a - self.a
if (self.absolute_flag ):
self.write(self.SPACE() + self.A() + (self.fmt.string(a)))
else:
self.write(self.SPACE() + self.A() + (self.fmt.string(da)))
self.a = a
if (b != None):
db = b - self.b
if (self.absolute_flag ):
self.write(self.SPACE() + self.B() + (self.fmt.string(b)))
else:
self.write(self.SPACE() + self.B() + (self.fmt.string(db)))
self.b = b
if (c != None):
dc = c - self.c
if (self.absolute_flag ):
self.write(self.SPACE() + self.C() + (self.fmt.string(c)))
else:
self.write(self.SPACE() + self.C() + (self.fmt.string(dc)))
self.c = c
if (self.fhv) : self.calc_feedrate_hv(math.sqrt(dx*dx+dy*dy), math.fabs(dz))
self.write_feedrate()
self.write_spindle()
self.write_misc()
self.write('\n')
def same_xyz(self, x=None, y=None, z=None):
if (x != None):
if (self.fmt.string(x + self.shift_x)) != (self.fmt.string(self.x)):
return False
if (y != None):
if (self.fmt.string(y + self.shift_y)) != (self.fmt.string(self.y)):
return False
if (z != None):
if (self.fmt.string(z + self.shift_z)) != (self.fmt.string(self.z)):
return False
return True
def get_quadrant(self, dx, dy):
if dx < 0:
if dy < 0:
return 2
else:
return 1
else:
if dy < 0:
return 3
else:
return 0
def quadrant_start(self, q, i, j, rad):
while q > 3: q = q - 4
if q == 0:
return i + rad, j
if q == 1:
return i, j + rad
if q == 2:
return i - rad, j
return i, j - rad
def quadrant_end(self, q, i, j, rad):
return self.quadrant_start(q + 1, i, j, rad)
def get_arc_angle(self, sdx, sdy, edx, edy, cw):
angle_s = math.atan2(sdy, sdx);
angle_e = math.atan2(edy, edx);
if cw:
if angle_s < angle_e: angle_s = angle_s + 2 * math.pi
else:
if angle_e < angle_s: angle_e = angle_e + 2 * math.pi
return angle_e - angle_s
def arc(self, cw, x=None, y=None, z=None, i=None, j=None, k=None, r=None):
if self.same_xyz(x, y, z): return
if self.can_do_helical_arcs == False and self.in_quadrant_splitting == False and (z != None) and (math.fabs(z - self.z) > 0.000001) and (self.fmt.string(z) != self.fmt.string(self.z)):
# split the helical arc into little line feed moves
if x == None: x = self.x
if y == None: y = self.y
sdx = self.x - i
sdy = self.y - j
edx = x - i
edy = y - j
radius = math.sqrt(sdx*sdx + sdy*sdy)
arc_angle = self.get_arc_angle(sdx, sdy, edx, edy, cw)
angle_start = math.atan2(sdy, sdx);
tolerance = 0.02
angle_step = 2.0 * math.atan( math.sqrt ( tolerance /(radius - tolerance) ))
segments = int(math.fabs(arc_angle / angle_step) + 1)
angle_step = arc_angle / segments
angle = angle_start
z_step = float(z - self.z)/segments
next_z = self.z
for p in range(0, segments):
angle = angle + angle_step
next_x = i + radius * math.cos(angle)
next_y = j + radius * math.sin(angle)
next_z = next_z + z_step
self.feed(next_x, next_y, next_z)
return
if self.arc_centre_positive == True and self.in_quadrant_splitting == False:
# split in to quadrant arcs
self.in_quadrant_splitting = True
if x == None: x = self.x
if y == None: y = self.y
sdx = self.x - i
sdy = self.y - j
edx = x - i
edy = y - j
qs = self.get_quadrant(sdx, sdy)
qe = self.get_quadrant(edx, edy)
if qs == qe:
arc_angle = math.fabs(self.get_arc_angle(sdx, sdy, edx, edy, cw))
# arc_angle will be either less than pi/2 or greater than 3pi/2
if arc_angle > 3.14:
if cw:
qs = qs + 4
else:
qe = qe + 4
if qs == qe:
self.arc(cw, x, y, z, i, j, k, r)
else:
rad = math.sqrt(sdx * sdx + sdy * sdy)
if cw:
if qs < qe: qs = qs + 4
else:
if qe < qs: qe = qe + 4
q = qs
while 1:
x1 = x
y1 = y
if q != qe:
if cw:
x1, y1 = self.quadrant_start(q, i, j, rad)
else:
x1, y1 = self.quadrant_end(q, i, j, rad)
if (self.fmt.string(x1) != self.fmt.string(self.x)) or (self.fmt.string(y1) != self.fmt.string(self.y)):
if (math.fabs(x1 - self.x) > 0.01) or (math.fabs(y1 - self.y) > 0.01):
self.arc(cw, x1, y1, z, i, j, k, r)
else:
self.feed(x1, y1, z)
if q == qe:
break
if cw:
q = q - 1
else:
q = q + 1
self.in_quadrant_splitting = False
return
#if self.same_xyz(x, y, z): return
self.write_blocknum()
arc_g_code = ''
if cw: arc_g_code = self.ARC_CW()
else: arc_g_code = self.ARC_CCW()
if self.g0123_modal:
if self.prev_g0123 != arc_g_code:
self.write(arc_g_code)
self.prev_g0123 = arc_g_code
else:
self.write(arc_g_code)
self.write_preps()
if (x != None):
dx = x - self.x
if (self.absolute_flag ):
self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x)))
else:
self.write(self.SPACE() + self.X() + (self.fmt.string(dx)))
if (y != None):
dy = y - self.y
if (self.absolute_flag ):
self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y)))
else:
self.write(self.SPACE() + self.Y() + (self.fmt.string(dy)))
if (z != None):
dz = z - self.z
if (self.absolute_flag ):
self.write(self.SPACE() + self.Z() + (self.fmt.string(z + self.shift_z)))
else:
self.write(self.SPACE() + self.Z() + (self.fmt.string(dz)))
if (i != None):
if self.arc_centre_absolute == False:
i = i - self.x
s = self.fmt.string(i)
if self.arc_centre_positive == True:
if s[0] == '-':
s = s[1:]
self.write(self.SPACE() + self.CENTRE_X() + s)
if (j != None):
if self.arc_centre_absolute == False:
j = j - self.y
s = self.fmt.string(j)
if self.arc_centre_positive == True:
if s[0] == '-':
s = s[1:]
self.write(self.SPACE() + self.CENTRE_Y() + s)
if (k != None):
if self.arc_centre_absolute == False:
k = k - self.z
s = self.fmt.string(k)
if self.arc_centre_positive == True:
if s[0] == '-':
s = s[1:]
self.write(self.SPACE() + self.CENTRE_Z() + s)
if (r != None):
s = self.fmt.string(r)
if self.arc_centre_positive == True:
if s[0] == '-':
s = s[1:]
self.write(self.SPACE() + self.RADIUS() + s)
# use horizontal feed rate
if (self.fhv) : self.calc_feedrate_hv(1, 0)
self.write_feedrate()
self.write_spindle()
self.write_misc()
self.write('\n')
if (x != None):
self.x = x
if (y != None):
self.y = y
if (z != None):
self.z = z
def arc_cw(self, x=None, y=None, z=None, i=None, j=None, k=None, r=None):
self.arc(True, x, y, z, i, j, k, r)
def arc_ccw(self, x=None, y=None, z=None, i=None, j=None, k=None, r=None):
self.arc(False, x, y, z, i, j, k, r)
def dwell(self, t):
self.write_blocknum()
self.write_preps()
self.write(self.FORMAT_DWELL() % t)
self.write_misc()
self.write('\n')
def rapid_home(self, x=None, y=None, z=None, a=None, b=None, c=None, machine_coordinates=None):
pass
def rapid_unhome(self):
pass
def set_machine_coordinates(self):
self.write(self.SPACE() + self.MACHINE_COORDINATES())
self.prev_g0123 = ''
############################################################################
## CRC
def use_CRC(self):
return self.useCrc
def CRC_nominal_path(self):
return self.useCrcCenterline
def start_CRC(self, left = True, radius = 0.0):
# set up prep code, to be output on next line
if self.t == None:
raise "No tool specified for start_CRC()"
self.write_blocknum()
if left:
self.write(self.SPACE() + 'G41')
else:
self.write(self.SPACE() + 'G42')
self.write((self.SPACE() + 'D%i\n') % self.t)
def end_CRC(self):
self.write_blocknum()
self.write(self.SPACE() + 'G40\n')
############################################################################
## Cycles
def pattern(self):
pass
def pocket(self):
pass
def profile(self):
pass
# The drill routine supports drilling (G81), drilling with dwell (G82) and peck drilling (G83).
# The x,y,z values are INITIAL locations (above the hole to be made. This is in contrast to
# the Z value used in the G8[1-3] cycles where the Z value is that of the BOTTOM of the hole.
# Instead, this routine combines the Z value and the depth value to determine the bottom of
# the hole.
#
# The standoff value is the distance up from the 'z' value (normally just above the surface) where the bit retracts
# to in order to clear the swarf. This combines with 'z' to form the 'R' value in the G8[1-3] cycles.
#
# The peck_depth value is the incremental depth (Q value) that tells the peck drilling
# cycle how deep to go on each peck until the full depth is achieved.
#
# NOTE: This routine forces the mode to absolute mode so that the values passed into
# the G8[1-3] cycles make sense. I don't know how to find the mode to revert it so I won't
# revert it. I must set the mode so that I can be sure the values I'm passing in make
# sense to the end-machine.
#
def drill(self, x=None, y=None, z=None, depth=None, standoff=None, dwell=None, peck_depth=None, retract_mode=None, spindle_mode=None):
if (standoff == None):
# This is a bad thing. All the drilling cycles need a retraction (and starting) height.
return
if (z == None):
return # We need a Z value as well. This input parameter represents the top of the hole
if self.drillExpanded:
# for machines which don't understand G81, G82 etc.
if peck_depth == None:
peck_depth = depth
current_z = z
self.rapid(x, y)
first = True
while True:
next_z = current_z - peck_depth
if next_z < z - depth:
next_z = z - depth
if next_z >= current_z:
break;
if first:
self.rapid(z = z + standoff)
else:
self.rapid(z = current_z)
self.feed(z = next_z)
self.rapid(z = z + standoff)
current_z = next_z
if dwell:
self.dwell(dwell)
first = False
# we should pass clearance height into here, but my machine is on and I'm in a hurry... 22nd June 2011 danheeks
self.rapid(z = z + 5.0)
return
self.write_preps()
self.write_blocknum()
if (peck_depth != 0):
# We're pecking. Let's find a tree.
if self.drill_modal:
if self.PECK_DRILL() + self.PECK_DEPTH(self.fmt, peck_depth) != self.prev_drill:
self.write(self.SPACE() + self.PECK_DRILL() + self.SPACE() + self.PECK_DEPTH(self.fmt, peck_depth))
self.prev_drill = self.PECK_DRILL() + self.PECK_DEPTH(self.fmt, peck_depth)
else:
self.write(self.PECK_DRILL() + self.PECK_DEPTH(self.fmt, peck_depth))
else:
# We're either just drilling or drilling with dwell.
if (dwell == 0):
# We're just drilling.
if self.drill_modal:
if self.DRILL() != self.prev_drill:
self.write(self.SPACE() + self.DRILL())
self.prev_drill = self.DRILL()
else:
self.write(self.SPACE() + self.DRILL())
else:
# We're drilling with dwell.
if self.drill_modal:
if self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell) != self.prev_drill:
self.write(self.SPACE() + self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell))
self.prev_drill = self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell)
else:
self.write(self.SPACE() + self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell))
#self.write(self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell))
# Set the retraction point to the 'standoff' distance above the starting z height.
retract_height = z + standoff
if (x != None):
dx = x - self.x
self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x)))
self.x = x
if (y != None):
dy = y - self.y
self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y)))
self.y = y
dz = (z + standoff) - self.z # In the end, we will be standoff distance above the z value passed in.
if self.drill_modal:
if z != self.prev_z:
self.write(self.SPACE() + self.Z() + (self.fmt.string(z - depth)))
self.prev_z=z
else:
self.write(self.SPACE() + self.Z() + (self.fmt.string(z - depth))) # This is the 'z' value for the bottom of the hole.
self.z = (z + standoff) # We want to remember where z is at the end (at the top of the hole)
if self.drill_modal:
if self.prev_retract != self.RETRACT(self.fmt, retract_height) :
self.write(self.SPACE() + self.RETRACT(self.fmt, retract_height))
self.prev_retract = self.RETRACT(self.fmt, retract_height)
else:
self.write(self.SPACE() + self.RETRACT(self.fmt, retract_height))
if (self.fhv) :
self.calc_feedrate_hv(math.sqrt(dx*dx+dy*dy), math.fabs(dz))
self.write_feedrate()
self.write_spindle()
self.write_misc()
self.write('\n')
# G33.1 tapping with EMC for now
# unsynchronized (chuck) taps NIY (tap_mode = 1)
def tap(self, x=None, y=None, z=None, zretract=None, depth=None, standoff=None, dwell_bottom=None, pitch=None, stoppos=None, spin_in=None, spin_out=None, tap_mode=None, direction=None):
# mystery parameters:
# zretract=None, dwell_bottom=None,pitch=None, stoppos=None, spin_in=None, spin_out=None):
# I dont see how to map these to EMC Gcode
if (standoff == None):
# This is a bad thing. All the drilling cycles need a retraction (and starting) height.
return
if (z == None):
return # We need a Z value as well. This input parameter represents the top of the hole
if (pitch == None):
return # We need a pitch value.
if (direction == None):
return # We need a direction value.
if (tap_mode != 0):
raise "only rigid tapping currently supported"
self.write_preps()
self.write_blocknum()
self.write_spindle()
self.write('\n')
# rapid to starting point; z first, then x,y iff given
# Set the retraction point to the 'standoff' distance above the starting z height.
retract_height = z + standoff
# unsure if this is needed:
if self.z != retract_height:
self.rapid(z = retract_height)
# then continue to x,y if given
if (x != None) or (y != None):
self.write_blocknum()
self.write(self.RAPID() )
if (x != None):
self.write(self.X() + self.fmt.string(x + self.shift_x))
self.x = x
if (y != None):
self.write(self.Y() + self.fmt.string(y + self.shift_y))
self.y = y
self.write('\n')
self.write_blocknum()
self.write( self.TAP() )
self.write( self.TAP_DEPTH(self.ffmt,pitch) + self.SPACE() )
self.write(self.Z() + self.fmt.string(z - depth))# This is the 'z' value for the bottom of the tap.
self.write_misc()
self.write('\n')
self.z = retract_height # this cycle returns to the start position, so remember that as z value
def bore(self, x=None, y=None, z=None, zretract=None, depth=None, standoff=None, dwell_bottom=None, feed_in=None, feed_out=None, stoppos=None, shift_back=None, shift_right=None, backbore=False, stop=False):
pass
def end_canned_cycle(self):
if self.drillExpanded:
return
self.write_blocknum()
self.write(self.SPACE() + self.END_CANNED_CYCLE() + '\n')
self.prev_drill = ''
self.prev_g0123 = ''
self.prev_z = ''
self.prev_f = ''
self.prev_retract = ''
############################################################################
## Misc
def comment(self, text):
self.write((self.COMMENT(text) + '\n'))
def insert(self, text):
pass
def block_delete(self, on=False):
pass
def variable(self, id):
return (self.VARIABLE() % id)
def variable_set(self, id, value):
self.write_blocknum()
self.write(self.SPACE() + (self.VARIABLE() % id) + self.SPACE() + (self.VARIABLE_SET() % value) + '\n')
# This routine uses the G92 coordinate system offsets to establish a temporary coordinate
# system at the machine's current position. It can then use absolute coordinates relative
# to this position which makes coding easy. It then moves to the 'point along edge' which
# should be above the workpiece but still on one edge. It then backs off from the edge
# to the 'retracted point'. It then plunges down by the depth value specified. It then
# probes back towards the 'destination point'. The probed X,Y location are stored
# into the 'intersection variable' variables. Finally the machine moves back to the
# original location. This is important so that the results of multiple calls to this
# routine may be compared meaningfully.
def probe_single_point(self, point_along_edge_x=None, point_along_edge_y=None, depth=None, retracted_point_x=None, retracted_point_y=None, destination_point_x=None, destination_point_y=None, intersection_variable_x=None, intersection_variable_y=None, probe_offset_x_component=None, probe_offset_y_component=None ):
self.write_blocknum()
self.write(self.SPACE() + (self.SET_TEMPORARY_COORDINATE_SYSTEM() + (' X 0 Y 0 Z 0') + ('\t(Temporarily make this the origin)\n')))
if (self.fhv) : self.calc_feedrate_hv(1, 0)
self.write_blocknum()
self.write_feedrate()
self.write('\t(Set the feed rate for probing)\n')
self.rapid(point_along_edge_x,point_along_edge_y)
self.rapid(retracted_point_x,retracted_point_y)
self.feed(z=depth)
self.write_blocknum()
self.write((self.PROBE_TOWARDS_WITH_SIGNAL() + (' X ' + (self.fmt.string(destination_point_x)) + ' Y ' + (self.fmt.string(destination_point_y)) ) + ('\t(Probe towards our destination point)\n')))
self.comment('Back off the workpiece and re-probe more slowly')
self.write_blocknum()
self.write(self.SPACE() + ('#' + intersection_variable_x + '= [#5061 - [ 0.5 * ' + probe_offset_x_component + ']]\n'))
self.write_blocknum()
self.write(self.SPACE() + ('#' + intersection_variable_y + '= [#5062 - [ 0.5 * ' + probe_offset_y_component + ']]\n'))
self.write_blocknum();
self.write(self.RAPID())
self.write(self.SPACE() + ' X #' + intersection_variable_x + ' Y #' + intersection_variable_y + '\n')
self.write_blocknum()
self.write(self.SPACE() + self.FEEDRATE() + self.ffmt.string(self.fh / 2.0) + '\n')
self.write_blocknum()
self.write((self.SPACE() + self.PROBE_TOWARDS_WITH_SIGNAL() + (' X ' + (self.fmt.string(destination_point_x)) + ' Y ' + (self.fmt.string(destination_point_y)) ) + ('\t(Probe towards our destination point)\n')))
self.comment('Store the probed location somewhere we can get it again later')
self.write_blocknum()
self.write(('#' + intersection_variable_x + '=' + probe_offset_x_component + ' (Portion of probe radius that contributes to the X coordinate)\n'))
self.write_blocknum()
self.write(('#' + intersection_variable_x + '=[#' + intersection_variable_x + ' + #5061]\n'))
self.write_blocknum()
self.write(('#' + intersection_variable_y + '=' + probe_offset_y_component + ' (Portion of probe radius that contributes to the Y coordinate)\n'))
self.write_blocknum()
self.write(('#' + intersection_variable_y + '=[#' + intersection_variable_y + ' + #5062]\n'))
self.comment('Now move back to the original location')
self.rapid(retracted_point_x,retracted_point_y)
self.rapid(z=0)
self.rapid(point_along_edge_x,point_along_edge_y)
self.rapid(x=0, y=0)
self.write_blocknum()
self.write((self.REMOVE_TEMPORARY_COORDINATE_SYSTEM() + ('\t(Restore the previous coordinate system)\n')))
def probe_downward_point(self, x=None, y=None, depth=None, intersection_variable_z=None):
self.write_blocknum()
self.write((self.SET_TEMPORARY_COORDINATE_SYSTEM() + (' X 0 Y 0 Z 0') + ('\t(Temporarily make this the origin)\n')))
if (self.fhv) : self.calc_feedrate_hv(1, 0)
self.write_blocknum()
self.write(self.FEEDRATE() + ' [' + self.ffmt.string(self.fh) + ' / 5.0 ]')
self.write('\t(Set the feed rate for probing)\n')
if x != None and y != None:
self.write_blocknum();
self.write(self.RAPID())
self.write(' X ' + x + ' Y ' + y + '\n')
self.write_blocknum()
self.write((self.PROBE_TOWARDS_WITH_SIGNAL() + ' Z ' + (self.fmt.string(depth)) + ('\t(Probe towards our destination point)\n')))
self.comment('Store the probed location somewhere we can get it again later')
self.write_blocknum()
self.write(('#' + intersection_variable_z + '= #5063\n'))
self.comment('Now move back to the original location')
self.rapid(z=0)
self.rapid(x=0, y=0)
self.write_blocknum()
self.write((self.REMOVE_TEMPORARY_COORDINATE_SYSTEM() + ('\t(Restore the previous coordinate system)\n')))
def report_probe_results(self, x1=None, y1=None, z1=None, x2=None, y2=None, z2=None, x3=None, y3=None, z3=None, x4=None, y4=None, z4=None, x5=None, y5=None, z5=None, x6=None, y6=None, z6=None, xml_file_name=None ):
pass
def open_log_file(self, xml_file_name=None ):
pass
def log_coordinate(self, x=None, y=None, z=None):
pass
def log_message(self, message=None):
pass
def close_log_file(self):
pass
# Rapid movement to the midpoint between the two points specified.
# NOTE: The points are specified either as strings representing numbers or as strings
# representing variable names. This allows the HeeksCNC module to determine which
# variable names are used in these various routines.
def rapid_to_midpoint(self, x1=None, y1=None, z1=None, x2=None, y2=None, z2=None):
self.write_blocknum()
self.write(self.RAPID())
if ((x1 != None) and (x2 != None)):
self.write((' X ' + '[[[' + x1 + ' - ' + x2 + '] / 2.0] + ' + x2 + ']'))
if ((y1 != None) and (y2 != None)):
self.write((' Y ' + '[[[' + y1 + ' - ' + y2 + '] / 2.0] + ' + y2 + ']'))
if ((z1 != None) and (z2 != None)):
self.write((' Z ' + '[[[' + z1 + ' - ' + z2 + '] / 2.0] + ' + z2 + ']'))
self.write('\n')
# Rapid movement to the intersection of two lines (in the XY plane only). This routine
# is based on information found in http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
# written by Paul Bourke. The ua_numerator, ua_denominator, ua and ub parameters
# represent variable names (with the preceding '#' included in them) for use as temporary
# variables. They're specified here simply so that HeeksCNC can manage which variables
# are used in which GCode calculations.
#
# As per the notes on the web page, the ua_denominator and ub_denominator formulae are
# the same so we don't repeat this. If the two lines are coincident or parallel then
# no movement occurs.
#
# NOTE: The points are specified either as strings representing numbers or as strings
# representing variable names. This allows the HeeksCNC module to determine which
# variable names are used in these various routines.
def rapid_to_intersection(self, x1, y1, x2, y2, x3, y3, x4, y4, intersection_x, intersection_y, ua_numerator, ua_denominator, ua, ub_numerator, ub):
self.comment('Find the intersection of the two lines made up by the four probed points')
self.write_blocknum();
self.write(ua_numerator + '=[[[' + x4 + ' - ' + x3 + '] * [' + y1 + ' - ' + y3 + ']] - [[' + y4 + ' - ' + y3 + '] * [' + x1 + ' - ' + x3 + ']]]\n')
self.write_blocknum();
self.write(ua_denominator + '=[[[' + y4 + ' - ' + y3 + '] * [' + x2 + ' - ' + x1 + ']] - [[' + x4 + ' - ' + x3 + '] * [' + y2 + ' - ' + y1 + ']]]\n')
self.write_blocknum();
self.write(ub_numerator + '=[[[' + x2 + ' - ' + x1 + '] * [' + y1 + ' - ' + y3 + ']] - [[' + y2 + ' - ' + y1 + '] * [' + x1 + ' - ' + x3 + ']]]\n')
self.comment('If they are not parallel')
self.write('O900 IF [' + ua_denominator + ' NE 0]\n')
self.comment('And if they are not coincident')
self.write('O901 IF [' + ua_numerator + ' NE 0 ]\n')
self.write_blocknum();
self.write(' ' + ua + '=[' + ua_numerator + ' / ' + ua_denominator + ']\n')
self.write_blocknum();
self.write(' ' + ub + '=[' + ub_numerator + ' / ' + ua_denominator + ']\n') # NOTE: ub denominator is the same as ua denominator
self.write_blocknum();
self.write(' ' + intersection_x + '=[' + x1 + ' + [[' + ua + ' * [' + x2 + ' - ' + x1 + ']]]]\n')
self.write_blocknum();
self.write(' ' + intersection_y + '=[' + y1 + ' + [[' + ua + ' * [' + y2 + ' - ' + y1 + ']]]]\n')
self.write_blocknum();
self.write(' ' + self.RAPID())
self.write(' X ' + intersection_x + ' Y ' + intersection_y + '\n')
self.write('O901 ENDIF\n')
self.write('O900 ENDIF\n')
# We need to calculate the rotation angle based on the line formed by the
# x1,y1 and x2,y2 coordinate pair. With that angle, we need to move
# x_offset and y_offset distance from the current (0,0,0) position.
#
# The x1,y1,x2 and y2 parameters are all variable names that contain the actual
# values.
# The x_offset and y_offset are both numeric (floating point) values
def rapid_to_rotated_coordinate(self, x1, y1, x2, y2, ref_x, ref_y, x_current, y_current, x_final, y_final):
self.comment('Rapid to rotated coordinate')
self.write_blocknum();
self.write( '#1 = [atan[' + y2 + ' - ' + y1 + ']/[' + x2 +' - ' + x1 + ']] (nominal_angle)\n')
self.write_blocknum();
self.write( '#2 = [atan[' + ref_y + ']/[' + ref_x + ']] (reference angle)\n')
self.write_blocknum();
self.write( '#3 = [#1 - #2] (angle)\n' )
self.write_blocknum();
self.write( '#4 = [[[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(x_current)) + '] * COS[ #3 ]] - [[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(y_current)) + '] * SIN[ #3 ]]]\n' )
self.write_blocknum();
self.write( '#5 = [[[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(x_current)) + '] * SIN[ #3 ]] + [[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(y_current)) + '] * COS[ #3 ]]]\n' )
self.write_blocknum();
self.write( '#6 = [[' + (self.fmt.string(x_final)) + ' * COS[ #3 ]] - [' + (self.fmt.string(y_final)) + ' * SIN[ #3 ]]]\n' )
self.write_blocknum();
self.write( '#7 = [[' + (self.fmt.string(y_final)) + ' * SIN[ #3 ]] + [' + (self.fmt.string(y_final)) + ' * COS[ #3 ]]]\n' )
self.write_blocknum();
self.write( self.RAPID() + ' X [ #4 + #6 ] Y [ #5 + #7 ]\n' )
def BEST_POSSIBLE_SPEED(self, motion_blending_tolerance, naive_cam_tolerance):
statement = 'G64'
if (motion_blending_tolerance > 0):
statement += ' P ' + str(motion_blending_tolerance)
if (naive_cam_tolerance > 0):
statement += ' Q ' + str(naive_cam_tolerance)
return(statement)
def set_path_control_mode(self, mode, motion_blending_tolerance, naive_cam_tolerance ):
self.write_blocknum()
if (mode == 0):
self.write( self.EXACT_PATH_MODE() + '\n' )
if (mode == 1):
self.write( self.EXACT_STOP_MODE() + '\n' )
if (mode == 2):
self.write( self.BEST_POSSIBLE_SPEED( motion_blending_tolerance, naive_cam_tolerance ) + '\n' )
################################################################################
nc.creator = Creator()