################################################################################ # iso.py # # Simple ISO NC code creator # # Hirutso Enni, 2009-01-13 from . import nc import math from .format import Format from .format import * ################################################################################ class Creator(nc.Creator): def __init__(self): nc.Creator.__init__(self) self.a = 0 self.b = 0 self.c = 0 self.f = Address('F', fmt = Format(number_of_decimal_places = 2)) self.fh = None self.fv = None self.fhv = False self.g_plane = Address('G', fmt = Format(number_of_decimal_places = 0)) self.g_list = [] self.i = 0 self.j = 0 self.k = 0 self.m = [] self.n = 10 self.r = 0 self.s = AddressPlusMinus('S', fmt = Format(number_of_decimal_places = 2), modal = False) self.t = None self.x = 0 self.y = 0 self.z = 500 self.g0123_modal = False self.drill_modal = False self.prev_f = '' self.prev_g0123 = '' self.prev_drill = '' self.prev_retract = '' self.prev_z = '' self.useCrc = False self.useCrcCenterline = False self.gCRC = '' self.fmt = Format() self.absolute_flag = True self.ffmt = Format(number_of_decimal_places = 2) self.sfmt = Format(number_of_decimal_places = 1) self.arc_centre_absolute = False self.arc_centre_positive = False self.in_quadrant_splitting = False self.machine_coordinates = False self.drillExpanded = False self.can_do_helical_arcs = True self.shift_x = 0.0 self.shift_y = 0.0 self.shift_z = 0.0 ############################################################################ ## Codes def SPACE(self): return('') def FORMAT_FEEDRATE(self): return('%.2f') def FORMAT_ANG(self): return('%.1f') def FORMAT_TIME(self): return('%.2f') def FORMAT_DWELL(self): return('P%f') def BLOCK(self): return('N%i') def COMMENT(self,comment): return( ('(%s)' % comment ) ) def VARIABLE(self): return( '#%i') def VARIABLE_SET(self): return( '=%.3f') def PROGRAM(self): return( 'O%i') def PROGRAM_END(self): return( 'M02') def SUBPROG_CALL(self): return( 'M98' + self.SPACE() + 'P%i') def SUBPROG_END(self): return( 'M99') def STOP_OPTIONAL(self): return('M01') def STOP(self): return('M00') def IMPERIAL(self): return('G20') def METRIC(self): return('G21') def ABSOLUTE(self): return('G90') def INCREMENTAL(self): return('G91') def SET_TEMPORARY_COORDINATE_SYSTEM(self): return('G92') def REMOVE_TEMPORARY_COORDINATE_SYSTEM(self): return('G92.1') def POLAR_ON(self): return('G16') def POLAR_OFF(self): return('G15') def PLANE_XY(self): return('17') def PLANE_XZ(self): return('18') def PLANE_YZ(self): return('19') def TOOL(self): return('T%i' + self.SPACE() + 'M06') def TOOL_DEFINITION(self): return('G10' + self.SPACE() + 'L1') def WORKPLANE(self): return('G%i') def WORKPLANE_BASE(self): return(53) def SPINDLE_CW(self): return('M03') def SPINDLE_CCW(self): return('M04') def COOLANT_OFF(self): return('M09') def COOLANT_MIST(self): return('M07') def COOLANT_FLOOD(self): return('M08') def GEAR_OFF(self): return('?') def GEAR(self): return('M%i') def GEAR_BASE(self): return(37) def RAPID(self): return('G00') def FEED(self): return('G01') def ARC_CW(self): return('G02') def ARC_CCW(self): return('G03') def DWELL(self): return('G04') def DRILL(self): return('G81') def DRILL_WITH_DWELL(self, format, dwell): return('G82' + self.SPACE() + (format.string(dwell))) def PECK_DRILL(self): return('G83') def PECK_DEPTH(self, format, depth): return(self.SPACE() + 'Q' + (format.string(depth))) def RETRACT(self, format, height): return(self.SPACE() + 'R' + (format.string(height))) def END_CANNED_CYCLE(self): return('G80') def TAP(self): return('G84') def TAP_DEPTH(self, format, depth): return(self.SPACE() + 'K' + (format.string(depth))) def X(self): return('X') def Y(self): return('Y') def Z(self): return('Z') def A(self): return('A') def B(self): return('B') def C(self): return('C') def CENTRE_X(self): return('I') def CENTRE_Y(self): return('J') def CENTRE_Z(self): return('K') def RADIUS(self): return('R') def TIME(self): return('P') def PROBE_TOWARDS_WITH_SIGNAL(self): return('G38.2') def PROBE_TOWARDS_WITHOUT_SIGNAL(self): return('G38.3') def PROBE_AWAY_WITH_SIGNAL(self): return('G38.4') def PROBE_AWAY_WITHOUT_SIGNAL(self): return('G38.5') def MACHINE_COORDINATES(self): return('G53') def EXACT_PATH_MODE(self): return('G61') def EXACT_STOP_MODE(self): return('G61.1') ############################################################################ ## Internals def write_feedrate(self): self.f.write(self) def write_preps(self): self.g_plane.write(self) for g in self.g_list: self.write(self.SPACE() + g) self.g_list = [] def write_misc(self): if (len(self.m)) : self.write(self.m.pop()) def write_blocknum(self): self.write(self.BLOCK() % self.n) self.n += 10 def write_spindle(self): self.s.write(self) ############################################################################ ## Programs def program_begin(self, id, name=''): self.write((self.PROGRAM() % id) + self.SPACE() + (self.COMMENT(name))) self.write('\n') def program_stop(self, optional=False): self.write_blocknum() if (optional) : self.write(self.SPACE() + self.STOP_OPTIONAL() + '\n') self.prev_g0123 = '' else : self.write(self.STOP() + '\n') self.prev_g0123 = '' def program_end(self): self.write_blocknum() self.write(self.SPACE() + self.PROGRAM_END() + '\n') def flush_nc(self): if len(self.g_list) == 0 and len(self.m) == 0: return self.write_blocknum() self.write_preps() self.write_misc() self.write('\n') ############################################################################ ## Subprograms def sub_begin(self, id, name=''): self.write((self.PROGRAM() % id) + self.SPACE() + (self.COMMENT(name))) self.write('\n') def sub_call(self, id): self.write_blocknum() self.write(self.SPACE() + (self.SUBPROG_CALL() % id) + '\n') def sub_end(self): self.write_blocknum() self.write(self.SPACE() + self.SUBPROG_END() + '\n') ############################################################################ ## Settings def imperial(self): self.g_list.append(self.IMPERIAL()) self.fmt.number_of_decimal_places = 4 def metric(self): self.g_list.append(self.METRIC()) self.fmt.number_of_decimal_places = 3 def absolute(self): self.g_list.append(self.ABSOLUTE()) self.absolute_flag = True def incremental(self): self.g_list.append(self.INCREMENTAL()) self.absolute_flag = False def polar(self, on=True): if (on) : self.g_list.append(self.POLAR_ON()) else : self.g_list.append(self.POLAR_OFF()) def set_plane(self, plane): if (plane == 0) : self.g_plane.set(self.PLANE_XY()) elif (plane == 1) : self.g_plane.set(self.PLANE_XZ()) elif (plane == 2) : self.g_plane.set(self.PLANE_YZ()) def set_temporary_origin(self, x=None, y=None, z=None, a=None, b=None, c=None): self.write_blocknum() self.write(self.SPACE() + (self.SET_TEMPORARY_COORDINATE_SYSTEM())) if (x != None): self.write( self.SPACE() + 'X ' + (self.fmt.string(x + self.shift_x)) ) if (y != None): self.write( self.SPACE() + 'Y ' + (self.fmt.string(y + self.shift_y)) ) if (z != None): self.write( self.SPACE() + 'Z ' + (self.fmt.string(z + self.shift_z)) ) if (a != None): self.write( self.SPACE() + 'A ' + (self.fmt.string(a)) ) if (b != None): self.write( self.SPACE() + 'B ' + (self.fmt.string(b)) ) if (c != None): self.write( self.SPACE() + 'C ' + (self.fmt.string(c)) ) self.write('\n') def remove_temporary_origin(self): self.write_blocknum() self.write(self.SPACE() + (self.REMOVE_TEMPORARY_COORDINATE_SYSTEM())) self.write('\n') ############################################################################ ## new graphics origin- make a new coordinate system and snap it onto the geometry ## the toolpath generated should be translated def translate(self,x=None, y=None, z=None): self.shift_x = -x self.shift_y = -y self.shift_z = -z ############################################################################ ## Tools def tool_change(self, id): self.write_blocknum() self.write(self.SPACE() + (self.TOOL() % id) + '\n') self.t = id def tool_defn(self, id, name='', radius=None, length=None, gradient=None): self.write_blocknum() self.write(self.SPACE() + self.TOOL_DEFINITION()) self.write(self.SPACE() + ('P%i' % id) + ' ') if (radius != None): self.write(self.SPACE() + ('R%.3f' % radius)) if (length != None): self.write(self.SPACE() + 'Z%.3f' % length) self.write('\n') def offset_radius(self, id, radius=None): pass def offset_length(self, id, length=None): pass ############################################################################ ## Datums def datum_shift(self, x=None, y=None, z=None, a=None, b=None, c=None): pass def datum_set(self, x=None, y=None, z=None, a=None, b=None, c=None): pass # This is the coordinate system we're using. G54->G59, G59.1, G59.2, G59.3 # These are selected by values from 1 to 9 inclusive. def workplane(self, id): if ((id >= 1) and (id <= 6)): self.g_list.append(self.WORKPLANE() % (id + self.WORKPLANE_BASE())) if ((id >= 7) and (id <= 9)): self.g_list.append(((self.WORKPLANE() % (6 + self.WORKPLANE_BASE())) + ('.%i' % (id - 6)))) ############################################################################ ## Rates + Modes def feedrate(self, f): self.f.set(f) self.fhv = False def feedrate_hv(self, fh, fv): self.fh = fh self.fv = fv self.fhv = True def calc_feedrate_hv(self, h, v): if math.fabs(v) > math.fabs(h * 2): # some horizontal, so it should be fine to use the horizontal feed rate self.f.set(self.fv) else: # not much, if any horizontal component, so use the vertical feed rate self.f.set(self.fh) def spindle(self, s, clockwise): if clockwise == True: self.s.set(s, self.SPACE() + self.SPINDLE_CW(), self.SPACE() + self.SPINDLE_CCW()) else: self.s.set(s, self.SPACE() + self.SPINDLE_CCW(), self.SPACE() + self.SPINDLE_CW()) def coolant(self, mode=0): if (mode <= 0) : self.m.append(self.SPACE() + self.COOLANT_OFF()) elif (mode == 1) : self.m.append(self.SPACE() + self.COOLANT_MIST()) elif (mode == 2) : self.m.append(self.SPACE() + self.COOLANT_FLOOD()) def gearrange(self, gear=0): if (gear <= 0) : self.m.append(self.SPACE() + self.GEAR_OFF()) elif (gear <= 4) : self.m.append(self.SPACE() + self.GEAR() % (gear + GEAR_BASE())) ############################################################################ ## Moves def rapid(self, x=None, y=None, z=None, a=None, b=None, c=None, machine_coordinates=None ): self.write_blocknum() if self.machine_coordinates != False or (machine_coordinates != None and machine_coordinates == True): self.write( self.MACHINE_COORDINATES() + self.SPACE() ) if self.g0123_modal: if self.prev_g0123 != self.RAPID(): self.write(self.SPACE() + self.RAPID()) self.prev_g0123 = self.RAPID() else: self.write(self.SPACE() + self.RAPID()) self.write_preps() if (x != None): dx = x - self.x if (self.absolute_flag ): self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x))) else: self.write(self.SPACE() + self.X() + (self.fmt.string(dx))) self.x = x if (y != None): dy = y - self.y if (self.absolute_flag ): self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y))) else: self.write(self.SPACE() + self.Y() + (self.fmt.string(dy))) self.y = y if (z != None): dz = z - self.z if (self.absolute_flag ): self.write(self.SPACE() + self.Z() + (self.fmt.string(z + self.shift_z))) else: self.write(self.SPACE() + self.Z() + (self.fmt.string(dz))) self.z = z if (a != None): da = a - self.a if (self.absolute_flag ): self.write(self.SPACE() + self.A() + (self.fmt.string(a))) else: self.write(self.SPACE() + self.A() + (self.fmt.string(da))) self.a = a if (b != None): db = b - self.b if (self.absolute_flag ): self.write(self.SPACE() + self.B() + (self.fmt.string(b))) else: self.write(self.SPACE() + self.B() + (self.fmt.string(db))) self.b = b if (c != None): dc = c - self.c if (self.absolute_flag ): self.write(self.SPACE() + self.C() + (self.fmt.string(c))) else: self.write(self.SPACE() + self.C() + (self.fmt.string(dc))) self.c = c self.write_spindle() self.write_misc() self.write('\n') def feed(self, x=None, y=None, z=None, a=None, b=None, c=None): if self.same_xyz(x, y, z): return self.write_blocknum() if self.g0123_modal: if self.prev_g0123 != self.FEED(): self.write(self.SPACE() + self.FEED()) self.prev_g0123 = self.FEED() else: self.write(self.FEED()) self.write_preps() dx = dy = dz = 0 if (x != None): dx = x - self.x if (self.absolute_flag ): self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x))) else: self.write(self.SPACE() + self.X() + (self.fmt.string(dx))) self.x = x if (y != None): dy = y - self.y if (self.absolute_flag ): self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y))) else: self.write(self.SPACE() + self.Y() + (self.fmt.string(dy))) self.y = y if (z != None): dz = z - self.z if (self.absolute_flag ): self.write(self.SPACE() + self.Z() + (self.fmt.string(z + self.shift_z))) else: self.write(self.SPACE() + self.Z() + (self.fmt.string(dz))) self.z = z if (a != None): da = a - self.a if (self.absolute_flag ): self.write(self.SPACE() + self.A() + (self.fmt.string(a))) else: self.write(self.SPACE() + self.A() + (self.fmt.string(da))) self.a = a if (b != None): db = b - self.b if (self.absolute_flag ): self.write(self.SPACE() + self.B() + (self.fmt.string(b))) else: self.write(self.SPACE() + self.B() + (self.fmt.string(db))) self.b = b if (c != None): dc = c - self.c if (self.absolute_flag ): self.write(self.SPACE() + self.C() + (self.fmt.string(c))) else: self.write(self.SPACE() + self.C() + (self.fmt.string(dc))) self.c = c if (self.fhv) : self.calc_feedrate_hv(math.sqrt(dx*dx+dy*dy), math.fabs(dz)) self.write_feedrate() self.write_spindle() self.write_misc() self.write('\n') def same_xyz(self, x=None, y=None, z=None): if (x != None): if (self.fmt.string(x + self.shift_x)) != (self.fmt.string(self.x)): return False if (y != None): if (self.fmt.string(y + self.shift_y)) != (self.fmt.string(self.y)): return False if (z != None): if (self.fmt.string(z + self.shift_z)) != (self.fmt.string(self.z)): return False return True def get_quadrant(self, dx, dy): if dx < 0: if dy < 0: return 2 else: return 1 else: if dy < 0: return 3 else: return 0 def quadrant_start(self, q, i, j, rad): while q > 3: q = q - 4 if q == 0: return i + rad, j if q == 1: return i, j + rad if q == 2: return i - rad, j return i, j - rad def quadrant_end(self, q, i, j, rad): return self.quadrant_start(q + 1, i, j, rad) def get_arc_angle(self, sdx, sdy, edx, edy, cw): angle_s = math.atan2(sdy, sdx); angle_e = math.atan2(edy, edx); if cw: if angle_s < angle_e: angle_s = angle_s + 2 * math.pi else: if angle_e < angle_s: angle_e = angle_e + 2 * math.pi return angle_e - angle_s def arc(self, cw, x=None, y=None, z=None, i=None, j=None, k=None, r=None): if self.same_xyz(x, y, z): return if self.can_do_helical_arcs == False and self.in_quadrant_splitting == False and (z != None) and (math.fabs(z - self.z) > 0.000001) and (self.fmt.string(z) != self.fmt.string(self.z)): # split the helical arc into little line feed moves if x == None: x = self.x if y == None: y = self.y sdx = self.x - i sdy = self.y - j edx = x - i edy = y - j radius = math.sqrt(sdx*sdx + sdy*sdy) arc_angle = self.get_arc_angle(sdx, sdy, edx, edy, cw) angle_start = math.atan2(sdy, sdx); tolerance = 0.02 angle_step = 2.0 * math.atan( math.sqrt ( tolerance /(radius - tolerance) )) segments = int(math.fabs(arc_angle / angle_step) + 1) angle_step = arc_angle / segments angle = angle_start z_step = float(z - self.z)/segments next_z = self.z for p in range(0, segments): angle = angle + angle_step next_x = i + radius * math.cos(angle) next_y = j + radius * math.sin(angle) next_z = next_z + z_step self.feed(next_x, next_y, next_z) return if self.arc_centre_positive == True and self.in_quadrant_splitting == False: # split in to quadrant arcs self.in_quadrant_splitting = True if x == None: x = self.x if y == None: y = self.y sdx = self.x - i sdy = self.y - j edx = x - i edy = y - j qs = self.get_quadrant(sdx, sdy) qe = self.get_quadrant(edx, edy) if qs == qe: arc_angle = math.fabs(self.get_arc_angle(sdx, sdy, edx, edy, cw)) # arc_angle will be either less than pi/2 or greater than 3pi/2 if arc_angle > 3.14: if cw: qs = qs + 4 else: qe = qe + 4 if qs == qe: self.arc(cw, x, y, z, i, j, k, r) else: rad = math.sqrt(sdx * sdx + sdy * sdy) if cw: if qs < qe: qs = qs + 4 else: if qe < qs: qe = qe + 4 q = qs while 1: x1 = x y1 = y if q != qe: if cw: x1, y1 = self.quadrant_start(q, i, j, rad) else: x1, y1 = self.quadrant_end(q, i, j, rad) if (self.fmt.string(x1) != self.fmt.string(self.x)) or (self.fmt.string(y1) != self.fmt.string(self.y)): if (math.fabs(x1 - self.x) > 0.01) or (math.fabs(y1 - self.y) > 0.01): self.arc(cw, x1, y1, z, i, j, k, r) else: self.feed(x1, y1, z) if q == qe: break if cw: q = q - 1 else: q = q + 1 self.in_quadrant_splitting = False return #if self.same_xyz(x, y, z): return self.write_blocknum() arc_g_code = '' if cw: arc_g_code = self.ARC_CW() else: arc_g_code = self.ARC_CCW() if self.g0123_modal: if self.prev_g0123 != arc_g_code: self.write(arc_g_code) self.prev_g0123 = arc_g_code else: self.write(arc_g_code) self.write_preps() if (x != None): dx = x - self.x if (self.absolute_flag ): self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x))) else: self.write(self.SPACE() + self.X() + (self.fmt.string(dx))) if (y != None): dy = y - self.y if (self.absolute_flag ): self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y))) else: self.write(self.SPACE() + self.Y() + (self.fmt.string(dy))) if (z != None): dz = z - self.z if (self.absolute_flag ): self.write(self.SPACE() + self.Z() + (self.fmt.string(z + self.shift_z))) else: self.write(self.SPACE() + self.Z() + (self.fmt.string(dz))) if (i != None): if self.arc_centre_absolute == False: i = i - self.x s = self.fmt.string(i) if self.arc_centre_positive == True: if s[0] == '-': s = s[1:] self.write(self.SPACE() + self.CENTRE_X() + s) if (j != None): if self.arc_centre_absolute == False: j = j - self.y s = self.fmt.string(j) if self.arc_centre_positive == True: if s[0] == '-': s = s[1:] self.write(self.SPACE() + self.CENTRE_Y() + s) if (k != None): if self.arc_centre_absolute == False: k = k - self.z s = self.fmt.string(k) if self.arc_centre_positive == True: if s[0] == '-': s = s[1:] self.write(self.SPACE() + self.CENTRE_Z() + s) if (r != None): s = self.fmt.string(r) if self.arc_centre_positive == True: if s[0] == '-': s = s[1:] self.write(self.SPACE() + self.RADIUS() + s) # use horizontal feed rate if (self.fhv) : self.calc_feedrate_hv(1, 0) self.write_feedrate() self.write_spindle() self.write_misc() self.write('\n') if (x != None): self.x = x if (y != None): self.y = y if (z != None): self.z = z def arc_cw(self, x=None, y=None, z=None, i=None, j=None, k=None, r=None): self.arc(True, x, y, z, i, j, k, r) def arc_ccw(self, x=None, y=None, z=None, i=None, j=None, k=None, r=None): self.arc(False, x, y, z, i, j, k, r) def dwell(self, t): self.write_blocknum() self.write_preps() self.write(self.FORMAT_DWELL() % t) self.write_misc() self.write('\n') def rapid_home(self, x=None, y=None, z=None, a=None, b=None, c=None, machine_coordinates=None): pass def rapid_unhome(self): pass def set_machine_coordinates(self): self.write(self.SPACE() + self.MACHINE_COORDINATES()) self.prev_g0123 = '' ############################################################################ ## CRC def use_CRC(self): return self.useCrc def CRC_nominal_path(self): return self.useCrcCenterline def start_CRC(self, left = True, radius = 0.0): # set up prep code, to be output on next line if self.t == None: raise "No tool specified for start_CRC()" self.write_blocknum() if left: self.write(self.SPACE() + 'G41') else: self.write(self.SPACE() + 'G42') self.write((self.SPACE() + 'D%i\n') % self.t) def end_CRC(self): self.write_blocknum() self.write(self.SPACE() + 'G40\n') ############################################################################ ## Cycles def pattern(self): pass def pocket(self): pass def profile(self): pass # The drill routine supports drilling (G81), drilling with dwell (G82) and peck drilling (G83). # The x,y,z values are INITIAL locations (above the hole to be made. This is in contrast to # the Z value used in the G8[1-3] cycles where the Z value is that of the BOTTOM of the hole. # Instead, this routine combines the Z value and the depth value to determine the bottom of # the hole. # # The standoff value is the distance up from the 'z' value (normally just above the surface) where the bit retracts # to in order to clear the swarf. This combines with 'z' to form the 'R' value in the G8[1-3] cycles. # # The peck_depth value is the incremental depth (Q value) that tells the peck drilling # cycle how deep to go on each peck until the full depth is achieved. # # NOTE: This routine forces the mode to absolute mode so that the values passed into # the G8[1-3] cycles make sense. I don't know how to find the mode to revert it so I won't # revert it. I must set the mode so that I can be sure the values I'm passing in make # sense to the end-machine. # def drill(self, x=None, y=None, z=None, depth=None, standoff=None, dwell=None, peck_depth=None, retract_mode=None, spindle_mode=None): if (standoff == None): # This is a bad thing. All the drilling cycles need a retraction (and starting) height. return if (z == None): return # We need a Z value as well. This input parameter represents the top of the hole if self.drillExpanded: # for machines which don't understand G81, G82 etc. if peck_depth == None: peck_depth = depth current_z = z self.rapid(x, y) first = True while True: next_z = current_z - peck_depth if next_z < z - depth: next_z = z - depth if next_z >= current_z: break; if first: self.rapid(z = z + standoff) else: self.rapid(z = current_z) self.feed(z = next_z) self.rapid(z = z + standoff) current_z = next_z if dwell: self.dwell(dwell) first = False # we should pass clearance height into here, but my machine is on and I'm in a hurry... 22nd June 2011 danheeks self.rapid(z = z + 5.0) return self.write_preps() self.write_blocknum() if (peck_depth != 0): # We're pecking. Let's find a tree. if self.drill_modal: if self.PECK_DRILL() + self.PECK_DEPTH(self.fmt, peck_depth) != self.prev_drill: self.write(self.SPACE() + self.PECK_DRILL() + self.SPACE() + self.PECK_DEPTH(self.fmt, peck_depth)) self.prev_drill = self.PECK_DRILL() + self.PECK_DEPTH(self.fmt, peck_depth) else: self.write(self.PECK_DRILL() + self.PECK_DEPTH(self.fmt, peck_depth)) else: # We're either just drilling or drilling with dwell. if (dwell == 0): # We're just drilling. if self.drill_modal: if self.DRILL() != self.prev_drill: self.write(self.SPACE() + self.DRILL()) self.prev_drill = self.DRILL() else: self.write(self.SPACE() + self.DRILL()) else: # We're drilling with dwell. if self.drill_modal: if self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell) != self.prev_drill: self.write(self.SPACE() + self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell)) self.prev_drill = self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell) else: self.write(self.SPACE() + self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell)) #self.write(self.DRILL_WITH_DWELL(self.FORMAT_DWELL(),dwell)) # Set the retraction point to the 'standoff' distance above the starting z height. retract_height = z + standoff if (x != None): dx = x - self.x self.write(self.SPACE() + self.X() + (self.fmt.string(x + self.shift_x))) self.x = x if (y != None): dy = y - self.y self.write(self.SPACE() + self.Y() + (self.fmt.string(y + self.shift_y))) self.y = y dz = (z + standoff) - self.z # In the end, we will be standoff distance above the z value passed in. if self.drill_modal: if z != self.prev_z: self.write(self.SPACE() + self.Z() + (self.fmt.string(z - depth))) self.prev_z=z else: self.write(self.SPACE() + self.Z() + (self.fmt.string(z - depth))) # This is the 'z' value for the bottom of the hole. self.z = (z + standoff) # We want to remember where z is at the end (at the top of the hole) if self.drill_modal: if self.prev_retract != self.RETRACT(self.fmt, retract_height) : self.write(self.SPACE() + self.RETRACT(self.fmt, retract_height)) self.prev_retract = self.RETRACT(self.fmt, retract_height) else: self.write(self.SPACE() + self.RETRACT(self.fmt, retract_height)) if (self.fhv) : self.calc_feedrate_hv(math.sqrt(dx*dx+dy*dy), math.fabs(dz)) self.write_feedrate() self.write_spindle() self.write_misc() self.write('\n') # G33.1 tapping with EMC for now # unsynchronized (chuck) taps NIY (tap_mode = 1) def tap(self, x=None, y=None, z=None, zretract=None, depth=None, standoff=None, dwell_bottom=None, pitch=None, stoppos=None, spin_in=None, spin_out=None, tap_mode=None, direction=None): # mystery parameters: # zretract=None, dwell_bottom=None,pitch=None, stoppos=None, spin_in=None, spin_out=None): # I dont see how to map these to EMC Gcode if (standoff == None): # This is a bad thing. All the drilling cycles need a retraction (and starting) height. return if (z == None): return # We need a Z value as well. This input parameter represents the top of the hole if (pitch == None): return # We need a pitch value. if (direction == None): return # We need a direction value. if (tap_mode != 0): raise "only rigid tapping currently supported" self.write_preps() self.write_blocknum() self.write_spindle() self.write('\n') # rapid to starting point; z first, then x,y iff given # Set the retraction point to the 'standoff' distance above the starting z height. retract_height = z + standoff # unsure if this is needed: if self.z != retract_height: self.rapid(z = retract_height) # then continue to x,y if given if (x != None) or (y != None): self.write_blocknum() self.write(self.RAPID() ) if (x != None): self.write(self.X() + self.fmt.string(x + self.shift_x)) self.x = x if (y != None): self.write(self.Y() + self.fmt.string(y + self.shift_y)) self.y = y self.write('\n') self.write_blocknum() self.write( self.TAP() ) self.write( self.TAP_DEPTH(self.ffmt,pitch) + self.SPACE() ) self.write(self.Z() + self.fmt.string(z - depth))# This is the 'z' value for the bottom of the tap. self.write_misc() self.write('\n') self.z = retract_height # this cycle returns to the start position, so remember that as z value def bore(self, x=None, y=None, z=None, zretract=None, depth=None, standoff=None, dwell_bottom=None, feed_in=None, feed_out=None, stoppos=None, shift_back=None, shift_right=None, backbore=False, stop=False): pass def end_canned_cycle(self): if self.drillExpanded: return self.write_blocknum() self.write(self.SPACE() + self.END_CANNED_CYCLE() + '\n') self.prev_drill = '' self.prev_g0123 = '' self.prev_z = '' self.prev_f = '' self.prev_retract = '' ############################################################################ ## Misc def comment(self, text): self.write((self.COMMENT(text) + '\n')) def insert(self, text): pass def block_delete(self, on=False): pass def variable(self, id): return (self.VARIABLE() % id) def variable_set(self, id, value): self.write_blocknum() self.write(self.SPACE() + (self.VARIABLE() % id) + self.SPACE() + (self.VARIABLE_SET() % value) + '\n') # This routine uses the G92 coordinate system offsets to establish a temporary coordinate # system at the machine's current position. It can then use absolute coordinates relative # to this position which makes coding easy. It then moves to the 'point along edge' which # should be above the workpiece but still on one edge. It then backs off from the edge # to the 'retracted point'. It then plunges down by the depth value specified. It then # probes back towards the 'destination point'. The probed X,Y location are stored # into the 'intersection variable' variables. Finally the machine moves back to the # original location. This is important so that the results of multiple calls to this # routine may be compared meaningfully. def probe_single_point(self, point_along_edge_x=None, point_along_edge_y=None, depth=None, retracted_point_x=None, retracted_point_y=None, destination_point_x=None, destination_point_y=None, intersection_variable_x=None, intersection_variable_y=None, probe_offset_x_component=None, probe_offset_y_component=None ): self.write_blocknum() self.write(self.SPACE() + (self.SET_TEMPORARY_COORDINATE_SYSTEM() + (' X 0 Y 0 Z 0') + ('\t(Temporarily make this the origin)\n'))) if (self.fhv) : self.calc_feedrate_hv(1, 0) self.write_blocknum() self.write_feedrate() self.write('\t(Set the feed rate for probing)\n') self.rapid(point_along_edge_x,point_along_edge_y) self.rapid(retracted_point_x,retracted_point_y) self.feed(z=depth) self.write_blocknum() self.write((self.PROBE_TOWARDS_WITH_SIGNAL() + (' X ' + (self.fmt.string(destination_point_x)) + ' Y ' + (self.fmt.string(destination_point_y)) ) + ('\t(Probe towards our destination point)\n'))) self.comment('Back off the workpiece and re-probe more slowly') self.write_blocknum() self.write(self.SPACE() + ('#' + intersection_variable_x + '= [#5061 - [ 0.5 * ' + probe_offset_x_component + ']]\n')) self.write_blocknum() self.write(self.SPACE() + ('#' + intersection_variable_y + '= [#5062 - [ 0.5 * ' + probe_offset_y_component + ']]\n')) self.write_blocknum(); self.write(self.RAPID()) self.write(self.SPACE() + ' X #' + intersection_variable_x + ' Y #' + intersection_variable_y + '\n') self.write_blocknum() self.write(self.SPACE() + self.FEEDRATE() + self.ffmt.string(self.fh / 2.0) + '\n') self.write_blocknum() self.write((self.SPACE() + self.PROBE_TOWARDS_WITH_SIGNAL() + (' X ' + (self.fmt.string(destination_point_x)) + ' Y ' + (self.fmt.string(destination_point_y)) ) + ('\t(Probe towards our destination point)\n'))) self.comment('Store the probed location somewhere we can get it again later') self.write_blocknum() self.write(('#' + intersection_variable_x + '=' + probe_offset_x_component + ' (Portion of probe radius that contributes to the X coordinate)\n')) self.write_blocknum() self.write(('#' + intersection_variable_x + '=[#' + intersection_variable_x + ' + #5061]\n')) self.write_blocknum() self.write(('#' + intersection_variable_y + '=' + probe_offset_y_component + ' (Portion of probe radius that contributes to the Y coordinate)\n')) self.write_blocknum() self.write(('#' + intersection_variable_y + '=[#' + intersection_variable_y + ' + #5062]\n')) self.comment('Now move back to the original location') self.rapid(retracted_point_x,retracted_point_y) self.rapid(z=0) self.rapid(point_along_edge_x,point_along_edge_y) self.rapid(x=0, y=0) self.write_blocknum() self.write((self.REMOVE_TEMPORARY_COORDINATE_SYSTEM() + ('\t(Restore the previous coordinate system)\n'))) def probe_downward_point(self, x=None, y=None, depth=None, intersection_variable_z=None): self.write_blocknum() self.write((self.SET_TEMPORARY_COORDINATE_SYSTEM() + (' X 0 Y 0 Z 0') + ('\t(Temporarily make this the origin)\n'))) if (self.fhv) : self.calc_feedrate_hv(1, 0) self.write_blocknum() self.write(self.FEEDRATE() + ' [' + self.ffmt.string(self.fh) + ' / 5.0 ]') self.write('\t(Set the feed rate for probing)\n') if x != None and y != None: self.write_blocknum(); self.write(self.RAPID()) self.write(' X ' + x + ' Y ' + y + '\n') self.write_blocknum() self.write((self.PROBE_TOWARDS_WITH_SIGNAL() + ' Z ' + (self.fmt.string(depth)) + ('\t(Probe towards our destination point)\n'))) self.comment('Store the probed location somewhere we can get it again later') self.write_blocknum() self.write(('#' + intersection_variable_z + '= #5063\n')) self.comment('Now move back to the original location') self.rapid(z=0) self.rapid(x=0, y=0) self.write_blocknum() self.write((self.REMOVE_TEMPORARY_COORDINATE_SYSTEM() + ('\t(Restore the previous coordinate system)\n'))) def report_probe_results(self, x1=None, y1=None, z1=None, x2=None, y2=None, z2=None, x3=None, y3=None, z3=None, x4=None, y4=None, z4=None, x5=None, y5=None, z5=None, x6=None, y6=None, z6=None, xml_file_name=None ): pass def open_log_file(self, xml_file_name=None ): pass def log_coordinate(self, x=None, y=None, z=None): pass def log_message(self, message=None): pass def close_log_file(self): pass # Rapid movement to the midpoint between the two points specified. # NOTE: The points are specified either as strings representing numbers or as strings # representing variable names. This allows the HeeksCNC module to determine which # variable names are used in these various routines. def rapid_to_midpoint(self, x1=None, y1=None, z1=None, x2=None, y2=None, z2=None): self.write_blocknum() self.write(self.RAPID()) if ((x1 != None) and (x2 != None)): self.write((' X ' + '[[[' + x1 + ' - ' + x2 + '] / 2.0] + ' + x2 + ']')) if ((y1 != None) and (y2 != None)): self.write((' Y ' + '[[[' + y1 + ' - ' + y2 + '] / 2.0] + ' + y2 + ']')) if ((z1 != None) and (z2 != None)): self.write((' Z ' + '[[[' + z1 + ' - ' + z2 + '] / 2.0] + ' + z2 + ']')) self.write('\n') # Rapid movement to the intersection of two lines (in the XY plane only). This routine # is based on information found in http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/ # written by Paul Bourke. The ua_numerator, ua_denominator, ua and ub parameters # represent variable names (with the preceding '#' included in them) for use as temporary # variables. They're specified here simply so that HeeksCNC can manage which variables # are used in which GCode calculations. # # As per the notes on the web page, the ua_denominator and ub_denominator formulae are # the same so we don't repeat this. If the two lines are coincident or parallel then # no movement occurs. # # NOTE: The points are specified either as strings representing numbers or as strings # representing variable names. This allows the HeeksCNC module to determine which # variable names are used in these various routines. def rapid_to_intersection(self, x1, y1, x2, y2, x3, y3, x4, y4, intersection_x, intersection_y, ua_numerator, ua_denominator, ua, ub_numerator, ub): self.comment('Find the intersection of the two lines made up by the four probed points') self.write_blocknum(); self.write(ua_numerator + '=[[[' + x4 + ' - ' + x3 + '] * [' + y1 + ' - ' + y3 + ']] - [[' + y4 + ' - ' + y3 + '] * [' + x1 + ' - ' + x3 + ']]]\n') self.write_blocknum(); self.write(ua_denominator + '=[[[' + y4 + ' - ' + y3 + '] * [' + x2 + ' - ' + x1 + ']] - [[' + x4 + ' - ' + x3 + '] * [' + y2 + ' - ' + y1 + ']]]\n') self.write_blocknum(); self.write(ub_numerator + '=[[[' + x2 + ' - ' + x1 + '] * [' + y1 + ' - ' + y3 + ']] - [[' + y2 + ' - ' + y1 + '] * [' + x1 + ' - ' + x3 + ']]]\n') self.comment('If they are not parallel') self.write('O900 IF [' + ua_denominator + ' NE 0]\n') self.comment('And if they are not coincident') self.write('O901 IF [' + ua_numerator + ' NE 0 ]\n') self.write_blocknum(); self.write(' ' + ua + '=[' + ua_numerator + ' / ' + ua_denominator + ']\n') self.write_blocknum(); self.write(' ' + ub + '=[' + ub_numerator + ' / ' + ua_denominator + ']\n') # NOTE: ub denominator is the same as ua denominator self.write_blocknum(); self.write(' ' + intersection_x + '=[' + x1 + ' + [[' + ua + ' * [' + x2 + ' - ' + x1 + ']]]]\n') self.write_blocknum(); self.write(' ' + intersection_y + '=[' + y1 + ' + [[' + ua + ' * [' + y2 + ' - ' + y1 + ']]]]\n') self.write_blocknum(); self.write(' ' + self.RAPID()) self.write(' X ' + intersection_x + ' Y ' + intersection_y + '\n') self.write('O901 ENDIF\n') self.write('O900 ENDIF\n') # We need to calculate the rotation angle based on the line formed by the # x1,y1 and x2,y2 coordinate pair. With that angle, we need to move # x_offset and y_offset distance from the current (0,0,0) position. # # The x1,y1,x2 and y2 parameters are all variable names that contain the actual # values. # The x_offset and y_offset are both numeric (floating point) values def rapid_to_rotated_coordinate(self, x1, y1, x2, y2, ref_x, ref_y, x_current, y_current, x_final, y_final): self.comment('Rapid to rotated coordinate') self.write_blocknum(); self.write( '#1 = [atan[' + y2 + ' - ' + y1 + ']/[' + x2 +' - ' + x1 + ']] (nominal_angle)\n') self.write_blocknum(); self.write( '#2 = [atan[' + ref_y + ']/[' + ref_x + ']] (reference angle)\n') self.write_blocknum(); self.write( '#3 = [#1 - #2] (angle)\n' ) self.write_blocknum(); self.write( '#4 = [[[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(x_current)) + '] * COS[ #3 ]] - [[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(y_current)) + '] * SIN[ #3 ]]]\n' ) self.write_blocknum(); self.write( '#5 = [[[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(x_current)) + '] * SIN[ #3 ]] + [[' + (self.fmt.string(0)) + ' - ' + (self.fmt.string(y_current)) + '] * COS[ #3 ]]]\n' ) self.write_blocknum(); self.write( '#6 = [[' + (self.fmt.string(x_final)) + ' * COS[ #3 ]] - [' + (self.fmt.string(y_final)) + ' * SIN[ #3 ]]]\n' ) self.write_blocknum(); self.write( '#7 = [[' + (self.fmt.string(y_final)) + ' * SIN[ #3 ]] + [' + (self.fmt.string(y_final)) + ' * COS[ #3 ]]]\n' ) self.write_blocknum(); self.write( self.RAPID() + ' X [ #4 + #6 ] Y [ #5 + #7 ]\n' ) def BEST_POSSIBLE_SPEED(self, motion_blending_tolerance, naive_cam_tolerance): statement = 'G64' if (motion_blending_tolerance > 0): statement += ' P ' + str(motion_blending_tolerance) if (naive_cam_tolerance > 0): statement += ' Q ' + str(naive_cam_tolerance) return(statement) def set_path_control_mode(self, mode, motion_blending_tolerance, naive_cam_tolerance ): self.write_blocknum() if (mode == 0): self.write( self.EXACT_PATH_MODE() + '\n' ) if (mode == 1): self.write( self.EXACT_STOP_MODE() + '\n' ) if (mode == 2): self.write( self.BEST_POSSIBLE_SPEED( motion_blending_tolerance, naive_cam_tolerance ) + '\n' ) ################################################################################ nc.creator = Creator()