OpenRTX/platform/drivers/baseband/HR_C6000_UV3x0.cpp

280 wiersze
12 KiB
C++

/***************************************************************************
* Copyright (C) 2021 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include <interfaces/gpio.h>
#include <interfaces/delays.h>
#include <hwconfig.h>
#include "HR_C6000.h"
static const uint8_t initSeq1[] = { 0x01, 0x04, 0xD5, 0xD7, 0xF7, 0x7F, 0xD7, 0x57 };
static const uint8_t initSeq2[] =
{
0x04, 0x11, 0x80, 0x0C, 0x22, 0x01, 0x00, 0x00, 0x33, 0xEF, 0x00, 0xFF, 0xFF,
0xFF, 0xF0, 0xF0, 0x10, 0x00, 0x00, 0x06, 0x3B, 0xF8, 0x0E, 0xFD, 0x40, 0xFF,
0x00, 0x0B, 0x00, 0x00, 0x00, 0x06, 0x0B, 0x00, 0x17, 0x02, 0xFF, 0xE0, 0x14,
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t initSeq3[] =
{
0x01, 0x10, 0x69, 0x69, 0x96, 0x96, 0x96, 0x99, 0x99, 0x99, 0xA5, 0xA5, 0xAA,
0xAA, 0xCC, 0xCC, 0x00, 0xF0, 0x01, 0xFF, 0x01, 0x0F, 0x00, 0x00, 0x00, 0x00,
0x0D, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t initSeq4[] =
{
0x01, 0x30, 0x00, 0x00, 0x20, 0x3C, 0xFF, 0xFF, 0x3F, 0x50, 0x07, 0x60, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t initSeq5[] = { 0x01, 0x40, 0x00, 0x01, 0x01, 0x02, 0x01, 0x1E, 0xF0 };
static const uint8_t initSeq6[] = { 0x01, 0x50, 0x00, 0x08, 0xEB, 0x78, 0x67 };
static const uint8_t initSeq7[] = { 0x01, 0x04, 0xD5, 0xD7, 0xF7, 0x7F, 0xD7, 0x57 };
template class HR_Cx000 < C6000_SpiOpModes >;
template< class M >
void HR_Cx000< M >::init()
{
gpio_setMode(DMR_CS, OUTPUT);
gpio_setMode(DMR_SLEEP, OUTPUT);
gpio_setPin(DMR_SLEEP);
delayMs(10);
gpio_clearPin(DMR_SLEEP); // Exit from sleep pulling down DMR_SLEEP
delayMs(10);
writeReg(M::CONFIG, 0x0A, 0x80); // Clock connected to crystal
writeReg(M::CONFIG, 0x0B, 0x28); // Set PLL M Register
writeReg(M::CONFIG, 0x0C, 0x33); // Set PLL Dividers
delayMs(250);
writeReg(M::CONFIG, 0x0A, 0x00); // Clock connected to PLL
writeReg(M::CONFIG, 0xB9, 0x05); // System clock frequency
writeReg(M::CONFIG, 0xBA, 0x04); // Codec clock frequency
writeReg(M::CONFIG, 0xBB, 0x02); // Output clock frequency
writeReg(M::CONFIG, 0xA1, 0x80); // FM_mod, all modes cleared
writeReg(M::CONFIG, 0x10, 0xF3); // FM mode, Tier II, TimeSlot, 3rd layer mode, aligned (?)
writeReg(M::CONFIG, 0x40, 0x43); // Enable RX synchronisation, normal mode (no test)
writeReg(M::CONFIG, 0x07, 0x0B); // IF frequency - high 8 bit
writeReg(M::CONFIG, 0x08, 0xB8); // IF frequency - mid 8 bit
writeReg(M::CONFIG, 0x09, 0x00); // IF frequency - low 8 bit
sendSequence(initSeq1, sizeof(initSeq1));
writeReg(M::CONFIG, 0x01, 0xF8); // Swap TX IQ, swap RX IQ, two point mode for TX, baseband IQ mode for RX
sendSequence(initSeq2, sizeof(initSeq2));
writeReg(M::CONFIG, 0x00, 0x2A); // Reset codec, reset vocoder, reset I2S
writeReg(M::CONFIG, 0x06, 0x20); // Vocoder output connected to universal interface (?)
writeReg(M::CONFIG, 0x14, 0x59); // local address - low 8 bit
writeReg(M::CONFIG, 0x15, 0xF5); // local address - mid 8 bit
writeReg(M::CONFIG, 0x16, 0x21); // local address - high 8 bit
sendSequence(initSeq3, sizeof(initSeq3));
sendSequence(initSeq4, sizeof(initSeq4));
sendSequence(initSeq5, sizeof(initSeq5));
sendSequence(initSeq6, sizeof(initSeq6));
writeReg(M::AUX, 0x52, 0x08);
writeReg(M::AUX, 0x53, 0xEB);
writeReg(M::AUX, 0x54, 0x78);
writeReg(M::AUX, 0x45, 0x1E);
writeReg(M::AUX, 0x37, 0x50);
writeReg(M::AUX, 0x35, 0xFF);
writeReg(M::CONFIG, 0x39, 0x02); // Undocumented register
writeReg(M::CONFIG, 0x3D, 0x0A); // Undocumented register
writeReg(M::CONFIG, 0x83, 0xFF); // Clear all interrupt flags
writeReg(M::CONFIG, 0x87, 0x00); // Disable all interrupt sources
writeReg(M::CONFIG, 0x65, 0x0A); // Undocumented register
writeReg(M::CONFIG, 0x1D, 0xFF); // Local unaddress, mask unaddress (?)
writeReg(M::CONFIG, 0x1E, 0xF1); // Broadcast RX address, broadcast address mask
writeReg(M::CONFIG, 0xE2, 0x06); // Mic preamp disabled, anti-pop enabled
writeReg(M::CONFIG, 0xE4, 0x27); // Lineout gain, first and second stage mic gain
writeReg(M::CONFIG, 0xE3, 0x52); // Internal ADC and DAC passthrough enable
writeReg(M::CONFIG, 0xE5, 0x1A); // Undocumented register
writeReg(M::CONFIG, 0xE1, 0x0F); // Undocumented register
writeReg(M::CONFIG, 0xD1, 0xC4); // DTMF code width (?)
writeReg(M::CONFIG, 0x25, 0x0E); // Undocumented register
writeReg(M::CONFIG, 0x26, 0xFD); // Undocumented register
writeReg(M::CONFIG, 0x64, 0x00); // Undocumented register
}
template< class M >
void HR_Cx000< M >::terminate()
{
gpio_setPin(DMR_SLEEP);
gpio_setMode(DMR_CS, INPUT);
}
template< class M >
void HR_Cx000< M >::setModOffset(const uint16_t offset)
{
/*
* Same as original TYT firmware.
* Reference: functions @0802e7d4 and @080546cc in S18.16 binary image.
*
* Cast to uint8_t to have the exact situation of the original firmware.
*/
uint8_t value = static_cast< uint8_t>(offset);
uint8_t offUpper = (value < 0x80) ? 0x03 : 0x00;
uint8_t offLower = value + 0x80;
writeReg(M::CONFIG, 0x48, offUpper); // Two-point bias, upper value
writeReg(M::CONFIG, 0x47, offLower); // Two-point bias, lower value
writeReg(M::CONFIG, 0x04, offLower); // Bias value for TX, Q-channel
}
template< class M >
void HR_Cx000< M >::dmrMode()
{
writeReg(M::CONFIG, 0x10, 0x4F); // DMR mode, Tier I, TimeSlot, 2nd layer mode, relay, aligned (?)
writeReg(M::CONFIG, 0x81, 0x19); // Interrupt mask
writeReg(M::CONFIG, 0x01, 0xF0); // Swap TX IQ, swap RX IQ, two point mode for TX, IF mode for RX
writeReg(M::CONFIG, 0xE4, 0x27); // Lineout gain, first and second stage mic gain
writeReg(M::CONFIG, 0xE5, 0x1A); // Undocumented register
writeReg(M::CONFIG, 0x25, 0x0E); // Undocumented register
writeReg(M::CONFIG, 0x26, 0xFD); // Undocumented register
writeReg(M::AUX, 0x54, 0x78);
writeReg(M::CONFIG, 0x1F, 0x10); // Color code, encryption disabled
writeReg(M::AUX, 0x24, 0x00);
writeReg(M::AUX, 0x25, 0x00);
writeReg(M::AUX, 0x26, 0x00);
writeReg(M::AUX, 0x27, 0x00);
writeReg(M::CONFIG, 0x41, 0x40); // Start RX for upcoming time slot interrupt
writeReg(M::CONFIG, 0x56, 0x00); // Undocumented register
writeReg(M::CONFIG, 0x41, 0x40); // Start RX for upcoming time slot interrupt
writeReg(M::CONFIG, 0x5C, 0x09); // Undocumented register
writeReg(M::CONFIG, 0x5F, 0xC0); // Detect BS and MS frame sequences in 2 layer mode
sendSequence(initSeq7, sizeof(initSeq7));
writeReg(M::CONFIG, 0x11, 0x80); // Local channel mode
}
template< class M >
void HR_Cx000< M >::fmMode()
{
writeReg(M::CONFIG, 0x10, 0xF3); // FM mode, Tier II, TimeSlot, 3rd layer mode, aligned (?)
writeReg(M::CONFIG, 0x01, 0xB0); // Swap TX IQ, two point mode for TX, IF mode for RX
writeReg(M::CONFIG, 0x81, 0x04); // Interrupt mask
writeReg(M::CONFIG, 0xE5, 0x1A); // Undocumented register
writeReg(M::CONFIG, 0x36, 0x02); // Enable voice channel in FM mode
writeReg(M::CONFIG, 0xE4, 0x27); // Lineout gain, first and second stage mic gain
writeReg(M::CONFIG, 0xE2, 0x06); // Mic preamp disabled, anti-pop enabled
writeReg(M::CONFIG, 0x34, 0x98); // FM bpf enabled, 25kHz bandwidth
writeReg(M::CONFIG, 0x60, 0x00); // Disable both analog and DMR transmission
writeReg(M::CONFIG, 0x1F, 0x00); // Color code, encryption disabled
writeReg(M::AUX, 0x24, 0x00);
writeReg(M::AUX, 0x25, 0x00);
writeReg(M::AUX, 0x26, 0x00);
writeReg(M::AUX, 0x27, 0x00);
writeReg(M::CONFIG, 0x56, 0x00); // Undocumented register
writeReg(M::CONFIG, 0x41, 0x40); // Start RX for upcoming time slot interrupt
writeReg(M::CONFIG, 0x5C, 0x09); // Undocumented register
writeReg(M::CONFIG, 0x5F, 0xC0); // Detect BS and MS frame sequences in 2 layer mode
sendSequence(initSeq7, sizeof(initSeq7));
writeReg(M::CONFIG, 0x11, 0x80); // Local channel mode
writeReg(M::CONFIG, 0xE0, 0xC9); // Codec enabled, LineIn1, LineOut2, I2S slave mode
writeReg(M::CONFIG, 0x37, 0x81); // DAC gain
}
template< class M >
void HR_Cx000< M >::startAnalogTx(const TxAudioSource source, const FmConfig cfg)
{
/*
* NOTE: on MD-UV3x0 the incoming audio from the microphone is connected to
* "Linein1" input, while signal coming from the tone generator is connected
* to "Mic_p".
*/
uint8_t audioCfg = 0x81;
if(source == TxAudioSource::MIC) audioCfg |= 0x40;
if(source == TxAudioSource::LINE_IN) audioCfg |= 0x02;
writeReg(M::CONFIG, 0xE2, 0x00); // Mic preamp disabled, anti-pop disabled
// writeReg(M::CONFIG, 0xE4, 0x23); // Lineout gain, first and second stage mic gain
writeReg(M::CONFIG, 0xC2, 0x00); // Codec AGC gain
writeReg(M::CONFIG, 0xA1, 0x80); // FM_mod, all modes cleared
writeReg(M::CONFIG, 0x83, 0xFF); // Clear all interrupt flags
writeReg(M::CONFIG, 0x87, 0x00); // Disable all interrupt sources
// writeReg(M::CONFIG, 0x04, 0x24);
// writeReg(M::CONFIG, 0x35, 0x40);
// writeReg(M::CONFIG, 0x3F, 0x04);
writeReg(M::CONFIG, 0x34, static_cast< uint8_t >(cfg));
writeReg(M::CONFIG, 0x3E, 0x08); // FM Modulation frequency deviation coefficient at the receiving end
writeReg(M::AUX, 0x50, 0x00);
writeReg(M::AUX, 0x51, 0x00);
writeReg(M::CONFIG, 0x60, 0x80); // Start analog transmission
writeReg(M::CONFIG, 0x10, 0xF3); // FM mode, Tier II, TimeSlot, 3rd layer mode, aligned (?)
writeReg(M::CONFIG, 0xE0, audioCfg);
writeReg(M::CONFIG, 0x37, 0x8C); // DAC gain
}
template< class M >
void HR_Cx000< M >::stopAnalogTx()
{
writeReg(M::CONFIG, 0x60, 0x00); // Stop analog transmission
writeReg(M::CONFIG, 0xE0, 0xC9); // Codec enabled, LineIn1, LineOut2, I2S slave mode
writeReg(M::CONFIG, 0xE2, 0x06); // Mic preamp disabled, anti-pop enabled
writeReg(M::CONFIG, 0x34, 0x98); // FM bpf enabled, 25kHz bandwidth
writeReg(M::CONFIG, 0x37, 0x81); // DAC gain
}
/*
* SPI interface driver
*/
template< class M >
void HR_Cx000< M >::uSpi_init()
{
gpio_setMode(DMR_CS, OUTPUT);
gpio_setMode(DMR_CLK, OUTPUT);
gpio_setMode(DMR_MOSI, OUTPUT);
gpio_setMode(DMR_MISO, OUTPUT);
// Deselect HR_C6000, idle state of the CS line.
gpio_setPin(DMR_CS);
}
template< class M >
uint8_t HR_Cx000< M >::uSpi_sendRecv(const uint8_t value)
{
gpio_clearPin(DMR_CLK);
uint8_t incoming = 0;
for(uint8_t cnt = 0; cnt < 8; cnt++)
{
gpio_setPin(DMR_CLK);
if(value & (0x80 >> cnt))
{
gpio_setPin(DMR_MOSI);
}
else
{
gpio_clearPin(DMR_MOSI);
}
delayUs(1);
gpio_clearPin(DMR_CLK);
incoming = (incoming << 1) | gpio_readPin(DMR_MISO);
delayUs(1);
}
return incoming;
}