/*************************************************************************** * Copyright (C) 2021 by Federico Amedeo Izzo IU2NUO, * * Niccolò Izzo IU2KIN * * Frederik Saraci IU2NRO * * Silvano Seva IU2KWO * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, see * ***************************************************************************/ #include #include #include #include "HR_C6000.h" static const uint8_t initSeq1[] = { 0x01, 0x04, 0xD5, 0xD7, 0xF7, 0x7F, 0xD7, 0x57 }; static const uint8_t initSeq2[] = { 0x04, 0x11, 0x80, 0x0C, 0x22, 0x01, 0x00, 0x00, 0x33, 0xEF, 0x00, 0xFF, 0xFF, 0xFF, 0xF0, 0xF0, 0x10, 0x00, 0x00, 0x06, 0x3B, 0xF8, 0x0E, 0xFD, 0x40, 0xFF, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x06, 0x0B, 0x00, 0x17, 0x02, 0xFF, 0xE0, 0x14, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t initSeq3[] = { 0x01, 0x10, 0x69, 0x69, 0x96, 0x96, 0x96, 0x99, 0x99, 0x99, 0xA5, 0xA5, 0xAA, 0xAA, 0xCC, 0xCC, 0x00, 0xF0, 0x01, 0xFF, 0x01, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x0D, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t initSeq4[] = { 0x01, 0x30, 0x00, 0x00, 0x20, 0x3C, 0xFF, 0xFF, 0x3F, 0x50, 0x07, 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t initSeq5[] = { 0x01, 0x40, 0x00, 0x01, 0x01, 0x02, 0x01, 0x1E, 0xF0 }; static const uint8_t initSeq6[] = { 0x01, 0x50, 0x00, 0x08, 0xEB, 0x78, 0x67 }; static const uint8_t initSeq7[] = { 0x01, 0x04, 0xD5, 0xD7, 0xF7, 0x7F, 0xD7, 0x57 }; template class HR_Cx000 < C6000_SpiOpModes >; template< class M > void HR_Cx000< M >::init() { gpio_setMode(DMR_CS, OUTPUT); gpio_setMode(DMR_SLEEP, OUTPUT); gpio_setPin(DMR_SLEEP); delayMs(10); gpio_clearPin(DMR_SLEEP); // Exit from sleep pulling down DMR_SLEEP delayMs(10); writeReg(M::CONFIG, 0x0A, 0x80); // Clock connected to crystal writeReg(M::CONFIG, 0x0B, 0x28); // Set PLL M Register writeReg(M::CONFIG, 0x0C, 0x33); // Set PLL Dividers delayMs(250); writeReg(M::CONFIG, 0x0A, 0x00); // Clock connected to PLL writeReg(M::CONFIG, 0xB9, 0x05); // System clock frequency writeReg(M::CONFIG, 0xBA, 0x04); // Codec clock frequency writeReg(M::CONFIG, 0xBB, 0x02); // Output clock frequency writeReg(M::CONFIG, 0xA1, 0x80); // FM_mod, all modes cleared writeReg(M::CONFIG, 0x10, 0xF3); // FM mode, Tier II, TimeSlot, 3rd layer mode, aligned (?) writeReg(M::CONFIG, 0x40, 0x43); // Enable RX synchronisation, normal mode (no test) writeReg(M::CONFIG, 0x07, 0x0B); // IF frequency - high 8 bit writeReg(M::CONFIG, 0x08, 0xB8); // IF frequency - mid 8 bit writeReg(M::CONFIG, 0x09, 0x00); // IF frequency - low 8 bit sendSequence(initSeq1, sizeof(initSeq1)); writeReg(M::CONFIG, 0x01, 0xF8); // Swap TX IQ, swap RX IQ, two point mode for TX, baseband IQ mode for RX sendSequence(initSeq2, sizeof(initSeq2)); writeReg(M::CONFIG, 0x00, 0x2A); // Reset codec, reset vocoder, reset I2S writeReg(M::CONFIG, 0x06, 0x20); // Vocoder output connected to universal interface (?) writeReg(M::CONFIG, 0x14, 0x59); // local address - low 8 bit writeReg(M::CONFIG, 0x15, 0xF5); // local address - mid 8 bit writeReg(M::CONFIG, 0x16, 0x21); // local address - high 8 bit sendSequence(initSeq3, sizeof(initSeq3)); sendSequence(initSeq4, sizeof(initSeq4)); sendSequence(initSeq5, sizeof(initSeq5)); sendSequence(initSeq6, sizeof(initSeq6)); writeReg(M::AUX, 0x52, 0x08); writeReg(M::AUX, 0x53, 0xEB); writeReg(M::AUX, 0x54, 0x78); writeReg(M::AUX, 0x45, 0x1E); writeReg(M::AUX, 0x37, 0x50); writeReg(M::AUX, 0x35, 0xFF); writeReg(M::CONFIG, 0x39, 0x02); // Undocumented register writeReg(M::CONFIG, 0x3D, 0x0A); // Undocumented register writeReg(M::CONFIG, 0x83, 0xFF); // Clear all interrupt flags writeReg(M::CONFIG, 0x87, 0x00); // Disable all interrupt sources writeReg(M::CONFIG, 0x65, 0x0A); // Undocumented register writeReg(M::CONFIG, 0x1D, 0xFF); // Local unaddress, mask unaddress (?) writeReg(M::CONFIG, 0x1E, 0xF1); // Broadcast RX address, broadcast address mask writeReg(M::CONFIG, 0xE2, 0x06); // Mic preamp disabled, anti-pop enabled writeReg(M::CONFIG, 0xE4, 0x27); // Lineout gain, first and second stage mic gain writeReg(M::CONFIG, 0xE3, 0x52); // Internal ADC and DAC passthrough enable writeReg(M::CONFIG, 0xE5, 0x1A); // Undocumented register writeReg(M::CONFIG, 0xE1, 0x0F); // Undocumented register writeReg(M::CONFIG, 0xD1, 0xC4); // DTMF code width (?) writeReg(M::CONFIG, 0x25, 0x0E); // Undocumented register writeReg(M::CONFIG, 0x26, 0xFD); // Undocumented register writeReg(M::CONFIG, 0x64, 0x00); // Undocumented register } template< class M > void HR_Cx000< M >::terminate() { gpio_setPin(DMR_SLEEP); gpio_setMode(DMR_CS, INPUT); } template< class M > void HR_Cx000< M >::setModOffset(const uint16_t offset) { /* * Same as original TYT firmware. * Reference: functions @0802e7d4 and @080546cc in S18.16 binary image. * * Cast to uint8_t to have the exact situation of the original firmware. */ uint8_t value = static_cast< uint8_t>(offset); uint8_t offUpper = (value < 0x80) ? 0x03 : 0x00; uint8_t offLower = value + 0x80; writeReg(M::CONFIG, 0x48, offUpper); // Two-point bias, upper value writeReg(M::CONFIG, 0x47, offLower); // Two-point bias, lower value writeReg(M::CONFIG, 0x04, offLower); // Bias value for TX, Q-channel } template< class M > void HR_Cx000< M >::dmrMode() { writeReg(M::CONFIG, 0x10, 0x4F); // DMR mode, Tier I, TimeSlot, 2nd layer mode, relay, aligned (?) writeReg(M::CONFIG, 0x81, 0x19); // Interrupt mask writeReg(M::CONFIG, 0x01, 0xF0); // Swap TX IQ, swap RX IQ, two point mode for TX, IF mode for RX writeReg(M::CONFIG, 0xE4, 0x27); // Lineout gain, first and second stage mic gain writeReg(M::CONFIG, 0xE5, 0x1A); // Undocumented register writeReg(M::CONFIG, 0x25, 0x0E); // Undocumented register writeReg(M::CONFIG, 0x26, 0xFD); // Undocumented register writeReg(M::AUX, 0x54, 0x78); writeReg(M::CONFIG, 0x1F, 0x10); // Color code, encryption disabled writeReg(M::AUX, 0x24, 0x00); writeReg(M::AUX, 0x25, 0x00); writeReg(M::AUX, 0x26, 0x00); writeReg(M::AUX, 0x27, 0x00); writeReg(M::CONFIG, 0x41, 0x40); // Start RX for upcoming time slot interrupt writeReg(M::CONFIG, 0x56, 0x00); // Undocumented register writeReg(M::CONFIG, 0x41, 0x40); // Start RX for upcoming time slot interrupt writeReg(M::CONFIG, 0x5C, 0x09); // Undocumented register writeReg(M::CONFIG, 0x5F, 0xC0); // Detect BS and MS frame sequences in 2 layer mode sendSequence(initSeq7, sizeof(initSeq7)); writeReg(M::CONFIG, 0x11, 0x80); // Local channel mode } template< class M > void HR_Cx000< M >::fmMode() { writeReg(M::CONFIG, 0x10, 0xF3); // FM mode, Tier II, TimeSlot, 3rd layer mode, aligned (?) writeReg(M::CONFIG, 0x01, 0xB0); // Swap TX IQ, two point mode for TX, IF mode for RX writeReg(M::CONFIG, 0x81, 0x04); // Interrupt mask writeReg(M::CONFIG, 0xE5, 0x1A); // Undocumented register writeReg(M::CONFIG, 0x36, 0x02); // Enable voice channel in FM mode writeReg(M::CONFIG, 0xE4, 0x27); // Lineout gain, first and second stage mic gain writeReg(M::CONFIG, 0xE2, 0x06); // Mic preamp disabled, anti-pop enabled writeReg(M::CONFIG, 0x34, 0x98); // FM bpf enabled, 25kHz bandwidth writeReg(M::CONFIG, 0x60, 0x00); // Disable both analog and DMR transmission writeReg(M::CONFIG, 0x1F, 0x00); // Color code, encryption disabled writeReg(M::AUX, 0x24, 0x00); writeReg(M::AUX, 0x25, 0x00); writeReg(M::AUX, 0x26, 0x00); writeReg(M::AUX, 0x27, 0x00); writeReg(M::CONFIG, 0x56, 0x00); // Undocumented register writeReg(M::CONFIG, 0x41, 0x40); // Start RX for upcoming time slot interrupt writeReg(M::CONFIG, 0x5C, 0x09); // Undocumented register writeReg(M::CONFIG, 0x5F, 0xC0); // Detect BS and MS frame sequences in 2 layer mode sendSequence(initSeq7, sizeof(initSeq7)); writeReg(M::CONFIG, 0x11, 0x80); // Local channel mode writeReg(M::CONFIG, 0xE0, 0xC9); // Codec enabled, LineIn1, LineOut2, I2S slave mode writeReg(M::CONFIG, 0x37, 0x81); // DAC gain } template< class M > void HR_Cx000< M >::startAnalogTx(const TxAudioSource source, const FmConfig cfg) { /* * NOTE: on MD-UV3x0 the incoming audio from the microphone is connected to * "Linein1" input, while signal coming from the tone generator is connected * to "Mic_p". */ uint8_t audioCfg = 0x81; if(source == TxAudioSource::MIC) audioCfg |= 0x40; if(source == TxAudioSource::LINE_IN) audioCfg |= 0x02; writeReg(M::CONFIG, 0xE2, 0x00); // Mic preamp disabled, anti-pop disabled // writeReg(M::CONFIG, 0xE4, 0x23); // Lineout gain, first and second stage mic gain writeReg(M::CONFIG, 0xC2, 0x00); // Codec AGC gain writeReg(M::CONFIG, 0xA1, 0x80); // FM_mod, all modes cleared writeReg(M::CONFIG, 0x83, 0xFF); // Clear all interrupt flags writeReg(M::CONFIG, 0x87, 0x00); // Disable all interrupt sources // writeReg(M::CONFIG, 0x04, 0x24); // writeReg(M::CONFIG, 0x35, 0x40); // writeReg(M::CONFIG, 0x3F, 0x04); writeReg(M::CONFIG, 0x34, static_cast< uint8_t >(cfg)); writeReg(M::CONFIG, 0x3E, 0x08); // FM Modulation frequency deviation coefficient at the receiving end writeReg(M::AUX, 0x50, 0x00); writeReg(M::AUX, 0x51, 0x00); writeReg(M::CONFIG, 0x60, 0x80); // Start analog transmission writeReg(M::CONFIG, 0x10, 0xF3); // FM mode, Tier II, TimeSlot, 3rd layer mode, aligned (?) writeReg(M::CONFIG, 0xE0, audioCfg); writeReg(M::CONFIG, 0x37, 0x8C); // DAC gain } template< class M > void HR_Cx000< M >::stopAnalogTx() { writeReg(M::CONFIG, 0x60, 0x00); // Stop analog transmission writeReg(M::CONFIG, 0xE0, 0xC9); // Codec enabled, LineIn1, LineOut2, I2S slave mode writeReg(M::CONFIG, 0xE2, 0x06); // Mic preamp disabled, anti-pop enabled writeReg(M::CONFIG, 0x34, 0x98); // FM bpf enabled, 25kHz bandwidth writeReg(M::CONFIG, 0x37, 0x81); // DAC gain } /* * SPI interface driver */ template< class M > void HR_Cx000< M >::uSpi_init() { gpio_setMode(DMR_CS, OUTPUT); gpio_setMode(DMR_CLK, OUTPUT); gpio_setMode(DMR_MOSI, OUTPUT); gpio_setMode(DMR_MISO, OUTPUT); // Deselect HR_C6000, idle state of the CS line. gpio_setPin(DMR_CS); } template< class M > uint8_t HR_Cx000< M >::uSpi_sendRecv(const uint8_t value) { gpio_clearPin(DMR_CLK); uint8_t incoming = 0; for(uint8_t cnt = 0; cnt < 8; cnt++) { gpio_setPin(DMR_CLK); if(value & (0x80 >> cnt)) { gpio_setPin(DMR_MOSI); } else { gpio_clearPin(DMR_MOSI); } delayUs(1); gpio_clearPin(DMR_CLK); incoming = (incoming << 1) | gpio_readPin(DMR_MISO); delayUs(1); } return incoming; }