OpenRTX/platform/drivers/baseband/HR_C5000_MDx.cpp

232 wiersze
8.5 KiB
C++

/***************************************************************************
* Copyright (C) 2020 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include <interfaces/delays.h>
#include <interfaces/gpio.h>
#include <hwconfig.h>
#include "HR_C5000.h"
static const uint8_t initSeq1[] = {0x00, 0x00, 0xFF, 0xB0, 0x00, 0x00, 0x00, 0x00};
static const uint8_t initSeq2[] =
{
0x00, 0x11, 0x80, 0x0A, 0x22, 0x01, 0x00, 0x00, 0x33, 0xEF, 0x00, 0xFF, 0xFF,
0xFF, 0xF0, 0xF0, 0x10, 0x00, 0x00, 0x07, 0x3B, 0xF8, 0x0E, 0xFD, 0x40, 0xFF,
0x00, 0x0B, 0x00, 0x00, 0x00, 0x04, 0x0B, 0x00, 0x17, 0x02, 0xFF, 0xE0, 0x28,
0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t initSeq3[] =
{
0x01, 0x10, 0x69, 0x69, 0x96, 0x96, 0x96, 0x99, 0x99, 0x99, 0xA5, 0xA5, 0xAA,
0xAA, 0xCC, 0xCC, 0x00, 0xF0, 0x01, 0xFF, 0x01, 0x0F
};
static const uint8_t initSeq4[] = {0x01, 0x30, 0x30, 0x4E, 0x14, 0x1E, 0x1A, 0x30, 0x3D,
0x50, 0x07, 0x60};
static const uint8_t initSeq5[] = {0x01, 0x40, 0x90, 0x03, 0x01, 0x02, 0x05, 0x07, 0xF0};
static const uint8_t initSeq6[] = {0x01, 0x50, 0x00, 0x00, 0x00, 0x00, 0x00};
template class HR_Cx000 < C5000_SpiOpModes >;
template< class M >
void HR_Cx000< M >::init()
{
gpio_setMode(DMR_SLEEP, OUTPUT);
gpio_clearPin(DMR_SLEEP); // Exit from sleep pulling down DMR_SLEEP
writeReg(M::CONFIG, 0x0A, 0x80); // Internal clock connected to crystal
writeReg(M::CONFIG, 0x0B, 0x28); // PLL M register (multiplier)
writeReg(M::CONFIG, 0x0C, 0x33); // PLL input and output dividers
delayMs(1);
writeReg(M::CONFIG, 0x0A, 0x00); // Internal clock connected to PLL
writeReg(M::CONFIG, 0xBA, 0x22); // Built-in codec clock freq. (HR_C6000)
writeReg(M::CONFIG, 0xBB, 0x11); // Output clock operating freq. (HR_C6000)
}
template< class M >
void HR_Cx000< M >::terminate()
{
gpio_setPin(DMR_SLEEP);
gpio_setMode(DMR_CS, INPUT);
gpio_setMode(DMR_CLK, INPUT);
gpio_setMode(DMR_MOSI, INPUT);
gpio_setMode(DMR_MISO, INPUT);
gpio_setMode(DMR_SLEEP, INPUT);
}
template< class M >
void HR_Cx000< M >::setModOffset(const uint16_t offset)
{
/*
* Original TYT MD-380 code does this, both for DMR and FM.
* References: functions @0x0803fda8 and @0x0804005c
*
* Cast to uint8_t to have the exact situation of the original firmware.
*/
uint8_t value = static_cast< uint8_t>(offset);
uint8_t offUpper = (value < 0x80) ? 0x00 : 0x03;
uint8_t offLower = 0x7F - value;
writeReg(M::CONFIG, 0x48, offUpper); // Two-point bias, upper value
writeReg(M::CONFIG, 0x47, offLower); // Two-point bias, lower value
writeReg(M::CONFIG, 0x04, offLower); // Bias value for TX, Q-channel
}
template< class M >
void HR_Cx000< M >::dmrMode()
{
writeReg(M::CONFIG, 0xB9, 0x32);
// writeReg(M::CONFIG, 0xBA, 0x22);
// writeReg(M::CONFIG, 0xBB, 0x11);
writeReg(M::CONFIG, 0x10, 0x4F);
writeReg(M::CONFIG, 0x40, 0x43);
writeReg(M::CONFIG, 0x41, 0x40);
writeReg(M::CONFIG, 0x07, 0x0B);
writeReg(M::CONFIG, 0x08, 0xB8);
writeReg(M::CONFIG, 0x09, 0x00);
writeReg(M::CONFIG, 0x06, 0x21);
sendSequence(initSeq1, sizeof(initSeq1));
sendSequence(initSeq2, sizeof(initSeq2));
writeReg(M::CONFIG, 0x00, 0x28);
delayMs(1);
writeReg(M::CONFIG, 0x14, 0x59);
writeReg(M::CONFIG, 0x15, 0xF5);
writeReg(M::CONFIG, 0x16, 0x21);
sendSequence(initSeq3, sizeof(initSeq3));
sendSequence(initSeq4, sizeof(initSeq4));
sendSequence(initSeq5, sizeof(initSeq5));
sendSequence(initSeq6, sizeof(initSeq6));
writeReg(M::AUX, 0x52, 0x08);
writeReg(M::AUX, 0x53, 0xEB);
writeReg(M::AUX, 0x54, 0x78);
writeReg(M::AUX, 0x45, 0x1E);
writeReg(M::AUX, 0x37, 0x50);
writeReg(M::AUX, 0x35, 0xFF);
writeReg(M::CONFIG, 0x39, 0x02);
writeReg(M::CONFIG, 0x3D, 0x0A);
writeReg(M::CONFIG, 0x83, 0xFF);
writeReg(M::CONFIG, 0x87, 0x00);
writeReg(M::CONFIG, 0x65, 0x0A);
writeReg(M::CONFIG, 0x1D, 0xFF);
writeReg(M::CONFIG, 0x1E, 0xF1);
writeReg(M::CONFIG, 0x1F, 0x10);
writeReg(M::CONFIG, 0x0D, 0x8C);
writeReg(M::CONFIG, 0x0E, 0x44);
// writeReg(M::CONFIG, 0x0F, 0xC8);
writeReg(M::CONFIG, 0x37, 0xC2);
writeReg(M::CONFIG, 0x25, 0x0E);
writeReg(M::CONFIG, 0x26, 0xFD);
writeReg(M::CONFIG, 0x64, 0x00);
writeReg(M::AUX, 0x24, 0x00);
writeReg(M::AUX, 0x25, 0x00);
writeReg(M::AUX, 0x26, 0x00);
writeReg(M::AUX, 0x27, 0x00);
writeReg(M::CONFIG, 0x81, 0x19);
writeReg(M::CONFIG, 0x85, 0x00);
}
template< class M >
void HR_Cx000< M >::fmMode()
{
writeReg(M::CONFIG, 0xB9, 0x33); // System clock frequency (HR_C6000)
writeReg(M::CONFIG, 0x10, 0x80); // FM modulator mode
writeReg(M::CONFIG, 0x07, 0x0E); // IF frequency - upper 8 bits
writeReg(M::CONFIG, 0x08, 0x10); // IF frequency - middle 8 bits
writeReg(M::CONFIG, 0x09, 0x00); // IF frequency - lower 8 bits
sendSequence(initSeq1, sizeof(initSeq1));
writeReg(M::CONFIG, 0x06, 0x00); // VoCoder control
sendSequence(initSeq2, sizeof(initSeq2));
writeReg(M::CONFIG, 0x0D, 0x8C); // Codec control
writeReg(M::CONFIG, 0x0E, 0x40); // Mute HPout
writeReg(M::CONFIG, 0x83, 0xFF); // Clear all interrupt flags
writeReg(M::CONFIG, 0x87, 0x00); // Disable "stop" interrupts
writeReg(M::CONFIG, 0x81, 0x00); // Mask other interrupts
writeReg(M::CONFIG, 0x60, 0x00); // Disable both analog and DMR transmission
writeReg(M::CONFIG, 0x00, 0x28); // Reset register
}
template< class M >
void HR_Cx000< M >::startAnalogTx(const TxAudioSource source, const FmConfig cfg)
{
uint8_t audioCfg = 0x40; // Mute HPout
if(source == TxAudioSource::MIC) audioCfg |= 0x04; // Mic1En
if(source == TxAudioSource::LINE_IN) audioCfg |= 0x02; // Mic2En
writeReg(M::CONFIG, 0x0D, 0x8C); // Codec control
writeReg(M::CONFIG, 0x0E, audioCfg);
writeReg(M::CONFIG, 0x34, static_cast< uint8_t >(cfg));
writeReg(M::CONFIG, 0x3E, 0x08); // "FM Modulation frequency deviation coefficient at the receiving end" (HR_C6000)
writeReg(M::CONFIG, 0x37, 0xC2); // Unknown register
writeReg(M::CONFIG, 0x60, 0x80); // Enable analog voice transmission
}
template< class M >
void HR_Cx000< M >::stopAnalogTx()
{
writeReg(M::CONFIG, 0x60, 0x00); // Disable both analog and DMR transmission
}
/*
* SPI interface driver
*/
template< class M >
void HR_Cx000< M >::uSpi_init()
{
gpio_setMode(DMR_CS, OUTPUT);
gpio_setMode(DMR_CLK, OUTPUT);
gpio_setMode(DMR_MOSI, OUTPUT);
gpio_setMode(DMR_MISO, OUTPUT);
// Deselect HR_C5000, idle state of the CS line.
gpio_setPin(DMR_CS);
}
template< class M >
uint8_t HR_Cx000< M >::uSpi_sendRecv(const uint8_t value)
{
gpio_clearPin(DMR_CLK);
uint8_t incoming = 0;
for(uint8_t cnt = 0; cnt < 8; cnt++)
{
gpio_setPin(DMR_CLK);
if(value & (0x80 >> cnt))
{
gpio_setPin(DMR_MOSI);
}
else
{
gpio_clearPin(DMR_MOSI);
}
delayUs(1);
gpio_clearPin(DMR_CLK);
incoming = (incoming << 1) | gpio_readPin(DMR_MISO);
delayUs(1);
}
return incoming;
}