/*************************************************************************** * Copyright (C) 2020 by Federico Amedeo Izzo IU2NUO, * * Niccolò Izzo IU2KIN * * Frederik Saraci IU2NRO * * Silvano Seva IU2KWO * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, see * ***************************************************************************/ #include #include #include #include "HR_C5000.h" static const uint8_t initSeq1[] = {0x00, 0x00, 0xFF, 0xB0, 0x00, 0x00, 0x00, 0x00}; static const uint8_t initSeq2[] = { 0x00, 0x11, 0x80, 0x0A, 0x22, 0x01, 0x00, 0x00, 0x33, 0xEF, 0x00, 0xFF, 0xFF, 0xFF, 0xF0, 0xF0, 0x10, 0x00, 0x00, 0x07, 0x3B, 0xF8, 0x0E, 0xFD, 0x40, 0xFF, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x04, 0x0B, 0x00, 0x17, 0x02, 0xFF, 0xE0, 0x28, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t initSeq3[] = { 0x01, 0x10, 0x69, 0x69, 0x96, 0x96, 0x96, 0x99, 0x99, 0x99, 0xA5, 0xA5, 0xAA, 0xAA, 0xCC, 0xCC, 0x00, 0xF0, 0x01, 0xFF, 0x01, 0x0F }; static const uint8_t initSeq4[] = {0x01, 0x30, 0x30, 0x4E, 0x14, 0x1E, 0x1A, 0x30, 0x3D, 0x50, 0x07, 0x60}; static const uint8_t initSeq5[] = {0x01, 0x40, 0x90, 0x03, 0x01, 0x02, 0x05, 0x07, 0xF0}; static const uint8_t initSeq6[] = {0x01, 0x50, 0x00, 0x00, 0x00, 0x00, 0x00}; template class HR_Cx000 < C5000_SpiOpModes >; template< class M > void HR_Cx000< M >::init() { gpio_setMode(DMR_SLEEP, OUTPUT); gpio_clearPin(DMR_SLEEP); // Exit from sleep pulling down DMR_SLEEP writeReg(M::CONFIG, 0x0A, 0x80); // Internal clock connected to crystal writeReg(M::CONFIG, 0x0B, 0x28); // PLL M register (multiplier) writeReg(M::CONFIG, 0x0C, 0x33); // PLL input and output dividers delayMs(1); writeReg(M::CONFIG, 0x0A, 0x00); // Internal clock connected to PLL writeReg(M::CONFIG, 0xBA, 0x22); // Built-in codec clock freq. (HR_C6000) writeReg(M::CONFIG, 0xBB, 0x11); // Output clock operating freq. (HR_C6000) } template< class M > void HR_Cx000< M >::terminate() { gpio_setPin(DMR_SLEEP); gpio_setMode(DMR_CS, INPUT); gpio_setMode(DMR_CLK, INPUT); gpio_setMode(DMR_MOSI, INPUT); gpio_setMode(DMR_MISO, INPUT); gpio_setMode(DMR_SLEEP, INPUT); } template< class M > void HR_Cx000< M >::setModOffset(const uint16_t offset) { /* * Original TYT MD-380 code does this, both for DMR and FM. * References: functions @0x0803fda8 and @0x0804005c * * Cast to uint8_t to have the exact situation of the original firmware. */ uint8_t value = static_cast< uint8_t>(offset); uint8_t offUpper = (value < 0x80) ? 0x00 : 0x03; uint8_t offLower = 0x7F - value; writeReg(M::CONFIG, 0x48, offUpper); // Two-point bias, upper value writeReg(M::CONFIG, 0x47, offLower); // Two-point bias, lower value writeReg(M::CONFIG, 0x04, offLower); // Bias value for TX, Q-channel } template< class M > void HR_Cx000< M >::dmrMode() { writeReg(M::CONFIG, 0xB9, 0x32); // writeReg(M::CONFIG, 0xBA, 0x22); // writeReg(M::CONFIG, 0xBB, 0x11); writeReg(M::CONFIG, 0x10, 0x4F); writeReg(M::CONFIG, 0x40, 0x43); writeReg(M::CONFIG, 0x41, 0x40); writeReg(M::CONFIG, 0x07, 0x0B); writeReg(M::CONFIG, 0x08, 0xB8); writeReg(M::CONFIG, 0x09, 0x00); writeReg(M::CONFIG, 0x06, 0x21); sendSequence(initSeq1, sizeof(initSeq1)); sendSequence(initSeq2, sizeof(initSeq2)); writeReg(M::CONFIG, 0x00, 0x28); delayMs(1); writeReg(M::CONFIG, 0x14, 0x59); writeReg(M::CONFIG, 0x15, 0xF5); writeReg(M::CONFIG, 0x16, 0x21); sendSequence(initSeq3, sizeof(initSeq3)); sendSequence(initSeq4, sizeof(initSeq4)); sendSequence(initSeq5, sizeof(initSeq5)); sendSequence(initSeq6, sizeof(initSeq6)); writeReg(M::AUX, 0x52, 0x08); writeReg(M::AUX, 0x53, 0xEB); writeReg(M::AUX, 0x54, 0x78); writeReg(M::AUX, 0x45, 0x1E); writeReg(M::AUX, 0x37, 0x50); writeReg(M::AUX, 0x35, 0xFF); writeReg(M::CONFIG, 0x39, 0x02); writeReg(M::CONFIG, 0x3D, 0x0A); writeReg(M::CONFIG, 0x83, 0xFF); writeReg(M::CONFIG, 0x87, 0x00); writeReg(M::CONFIG, 0x65, 0x0A); writeReg(M::CONFIG, 0x1D, 0xFF); writeReg(M::CONFIG, 0x1E, 0xF1); writeReg(M::CONFIG, 0x1F, 0x10); writeReg(M::CONFIG, 0x0D, 0x8C); writeReg(M::CONFIG, 0x0E, 0x44); // writeReg(M::CONFIG, 0x0F, 0xC8); writeReg(M::CONFIG, 0x37, 0xC2); writeReg(M::CONFIG, 0x25, 0x0E); writeReg(M::CONFIG, 0x26, 0xFD); writeReg(M::CONFIG, 0x64, 0x00); writeReg(M::AUX, 0x24, 0x00); writeReg(M::AUX, 0x25, 0x00); writeReg(M::AUX, 0x26, 0x00); writeReg(M::AUX, 0x27, 0x00); writeReg(M::CONFIG, 0x81, 0x19); writeReg(M::CONFIG, 0x85, 0x00); } template< class M > void HR_Cx000< M >::fmMode() { writeReg(M::CONFIG, 0xB9, 0x33); // System clock frequency (HR_C6000) writeReg(M::CONFIG, 0x10, 0x80); // FM modulator mode writeReg(M::CONFIG, 0x07, 0x0E); // IF frequency - upper 8 bits writeReg(M::CONFIG, 0x08, 0x10); // IF frequency - middle 8 bits writeReg(M::CONFIG, 0x09, 0x00); // IF frequency - lower 8 bits sendSequence(initSeq1, sizeof(initSeq1)); writeReg(M::CONFIG, 0x06, 0x00); // VoCoder control sendSequence(initSeq2, sizeof(initSeq2)); writeReg(M::CONFIG, 0x0D, 0x8C); // Codec control writeReg(M::CONFIG, 0x0E, 0x40); // Mute HPout writeReg(M::CONFIG, 0x83, 0xFF); // Clear all interrupt flags writeReg(M::CONFIG, 0x87, 0x00); // Disable "stop" interrupts writeReg(M::CONFIG, 0x81, 0x00); // Mask other interrupts writeReg(M::CONFIG, 0x60, 0x00); // Disable both analog and DMR transmission writeReg(M::CONFIG, 0x00, 0x28); // Reset register } template< class M > void HR_Cx000< M >::startAnalogTx(const TxAudioSource source, const FmConfig cfg) { uint8_t audioCfg = 0x40; // Mute HPout if(source == TxAudioSource::MIC) audioCfg |= 0x04; // Mic1En if(source == TxAudioSource::LINE_IN) audioCfg |= 0x02; // Mic2En writeReg(M::CONFIG, 0x0D, 0x8C); // Codec control writeReg(M::CONFIG, 0x0E, audioCfg); writeReg(M::CONFIG, 0x34, static_cast< uint8_t >(cfg)); writeReg(M::CONFIG, 0x3E, 0x08); // "FM Modulation frequency deviation coefficient at the receiving end" (HR_C6000) writeReg(M::CONFIG, 0x37, 0xC2); // Unknown register writeReg(M::CONFIG, 0x60, 0x80); // Enable analog voice transmission } template< class M > void HR_Cx000< M >::stopAnalogTx() { writeReg(M::CONFIG, 0x60, 0x00); // Disable both analog and DMR transmission } /* * SPI interface driver */ template< class M > void HR_Cx000< M >::uSpi_init() { gpio_setMode(DMR_CS, OUTPUT); gpio_setMode(DMR_CLK, OUTPUT); gpio_setMode(DMR_MOSI, OUTPUT); gpio_setMode(DMR_MISO, OUTPUT); // Deselect HR_C5000, idle state of the CS line. gpio_setPin(DMR_CS); } template< class M > uint8_t HR_Cx000< M >::uSpi_sendRecv(const uint8_t value) { gpio_clearPin(DMR_CLK); uint8_t incoming = 0; for(uint8_t cnt = 0; cnt < 8; cnt++) { gpio_setPin(DMR_CLK); if(value & (0x80 >> cnt)) { gpio_setPin(DMR_MOSI); } else { gpio_clearPin(DMR_MOSI); } delayUs(1); gpio_clearPin(DMR_CLK); incoming = (incoming << 1) | gpio_readPin(DMR_MISO); delayUs(1); } return incoming; }