OpenRTX/platform/drivers/NVM/W25Qx.c

342 wiersze
9.0 KiB
C

/***************************************************************************
* Copyright (C) 2020 - 2023 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include "W25Qx.h"
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <hwconfig.h>
#include <peripherals/gpio.h>
#include <interfaces/delays.h>
#define CMD_WRITE 0x02 /* Read data */
#define CMD_READ 0x03 /* Read data */
#define CMD_RDSTA 0x05 /* Read status register */
#define CMD_WREN 0x06 /* Write enable */
#define CMD_ESECT 0x20 /* Erase 4kB sector */
#define CMD_RSECR 0x48 /* Read security register */
#define CMD_WKUP 0xAB /* Release power down */
#define CMD_PDWN 0xB9 /* Power down */
#define CMD_ECHIP 0xC7 /* Full chip erase */
/*
* Target-specific SPI interface functions, their implementation can be found
* in source files "spiFlash_xxx.c"
*/
extern uint8_t spiFlash_SendRecv(uint8_t val);
extern void spiFlash_init();
extern void spiFlash_terminate();
static const size_t PAGE_SIZE = 256;
static const size_t SECT_SIZE = 4096;
/**
* \internal
* Wait until an erase or write operation finishes.
*
* @param timeout: wait timeout, in ms.
* @return zero on success, -EIO if timeout expires.
*/
static int waitUntilReady(uint32_t timeout)
{
// Each wait tick is 500us
timeout *= 2;
while(timeout > 0)
{
delayUs(500);
timeout--;
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_RDSTA);
uint8_t status = spiFlash_SendRecv(0x00);
gpio_setPin(FLASH_CS);
/* If busy flag is low, we're done */
if((status & 0x01) == 0)
return 0;
}
return -EIO;
}
void W25Qx_init()
{
gpio_setMode(FLASH_CS, OUTPUT);
gpio_setPin(FLASH_CS);
spiFlash_init();
W25Qx_wakeup();
// TODO: Implement sleep to increase power saving
}
void W25Qx_terminate()
{
W25Qx_sleep();
gpio_setMode(FLASH_CS, INPUT);
spiFlash_terminate();
}
void W25Qx_wakeup()
{
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_WKUP);
gpio_setPin(FLASH_CS);
}
void W25Qx_sleep()
{
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_PDWN);
gpio_setPin(FLASH_CS);
}
ssize_t W25Qx_readSecurityRegister(uint32_t addr, void* buf, size_t len)
{
uint32_t addrBase = addr & 0x3000;
uint32_t addrRange = addr & 0xCFFF;
if((addrBase < 0x1000) || (addrBase > 0x3000)) return -1; /* Out of base */
if(addrRange > 0xFF) return -1; /* Out of range */
/* Keep 256-byte boundary to avoid wrap-around when reading */
size_t readLen = len;
if((addrRange + len) > 0xFF)
{
readLen = 0xFF - (addrRange & 0xFF);
}
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_RSECR); /* Command */
spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */
spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */
spiFlash_SendRecv(addr & 0xFF); /* Address low */
spiFlash_SendRecv(0x00); /* Dummy byte */
for(size_t i = 0; i < readLen; i++)
{
((uint8_t *) buf)[i] = spiFlash_SendRecv(0x00);
}
gpio_setPin(FLASH_CS);
return ((ssize_t) readLen);
}
int W25Qx_readData(uint32_t addr, void* buf, size_t len)
{
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_READ); /* Command */
spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */
spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */
spiFlash_SendRecv(addr & 0xFF); /* Address low */
for(size_t i = 0; i < len; i++)
{
((uint8_t *) buf)[i] = spiFlash_SendRecv(0x00);
}
gpio_setPin(FLASH_CS);
return 0;
}
int W25Qx_erase(uint32_t addr, size_t size)
{
// Addr or size not aligned to sector size
if(((addr % SECT_SIZE) != 0) || ((size % SECT_SIZE) != 0))
return -EINVAL;
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_WREN); /* Write enable */
gpio_setPin(FLASH_CS);
delayUs(5);
int ret = 0;
while(size > 0)
{
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_ESECT); /* Command */
spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */
spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */
spiFlash_SendRecv(addr & 0xFF); /* Address low */
gpio_setPin(FLASH_CS);
ret = waitUntilReady(500);
if(ret < 0)
break;
size -= SECT_SIZE;
addr += SECT_SIZE;
}
return ret;
}
bool W25Qx_eraseChip()
{
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_WREN);
gpio_setPin(FLASH_CS);
delayUs(5);
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_ECHIP);
gpio_setPin(FLASH_CS);
/*
* Wait until erase terminates, timeout after 200s.
*/
int ret = waitUntilReady(200000);
if(ret == 0)
return true;
return false;
}
ssize_t W25Qx_writePage(uint32_t addr, const void* buf, size_t len)
{
/* Keep page boundary to avoid wrap-around when writing */
size_t addrRange = addr & (PAGE_SIZE - 1);
size_t writeLen = len;
if((addrRange + len) > PAGE_SIZE)
{
writeLen = PAGE_SIZE - addrRange;
}
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_WREN); /* Write enable */
gpio_setPin(FLASH_CS);
delayUs(5);
gpio_clearPin(FLASH_CS);
spiFlash_SendRecv(CMD_WRITE); /* Command */
spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */
spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */
spiFlash_SendRecv(addr & 0xFF); /* Address low */
for(size_t i = 0; i < writeLen; i++)
{
uint8_t value = ((uint8_t *) buf)[i];
(void) spiFlash_SendRecv(value);
}
gpio_setPin(FLASH_CS);
/*
* Wait until erase terminates, timeout after 500ms.
*/
int ret = waitUntilReady(500);
if(ret < 0)
return (ssize_t) ret;
return writeLen;
}
int W25Qx_writeData(uint32_t addr, const void *buf, size_t len)
{
while(len > 0)
{
size_t toWrite = len;
// Maximum single-shot write lenght is one page
if(toWrite >= PAGE_SIZE)
toWrite = PAGE_SIZE;
ssize_t written = W25Qx_writePage(addr, buf, toWrite);
if(written < 0)
return (int) written;
len -= (size_t) written;
buf = ((const uint8_t *) buf) + (size_t) written;
addr += (size_t) written;
}
return 0;
}
static const struct nvmParams W25Qx_params =
{
.write_size = 1,
.erase_size = SECT_SIZE,
.erase_cycles = 100000,
.type = NVM_FLASH
};
static int nvm_api_readSecReg(const struct nvmDevice *dev, uint32_t offset, void *data, size_t len)
{
(void) dev;
return W25Qx_readSecurityRegister(offset, data, len);
}
static int nvm_api_read(const struct nvmDevice *dev, uint32_t offset, void *data, size_t len)
{
(void) dev;
return W25Qx_readData(offset, data, len);
}
static int nvm_api_write(const struct nvmDevice *dev, uint32_t offset, const void *data, size_t len)
{
(void) dev;
return W25Qx_writeData(offset, data, len);
}
static int nvm_api_erase(const struct nvmDevice *dev, uint32_t offset, size_t size)
{
(void) dev;
return W25Qx_erase(offset, size);
}
static const struct nvmParams *nvm_api_params(const struct nvmDevice *dev)
{
(void) dev;
return &W25Qx_params;
}
const struct nvmApi W25Qx_api =
{
.read = nvm_api_read,
.write = nvm_api_write,
.erase = nvm_api_erase,
.sync = NULL,
.params = nvm_api_params
};
const struct nvmApi W25Qx_secReg_api =
{
.read = nvm_api_readSecReg,
.write = NULL,
.erase = NULL,
.sync = NULL,
.params = nvm_api_params
};