/*************************************************************************** * Copyright (C) 2020 - 2023 by Federico Amedeo Izzo IU2NUO, * * Niccolò Izzo IU2KIN * * Frederik Saraci IU2NRO * * Silvano Seva IU2KWO * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, see * ***************************************************************************/ #include "W25Qx.h" #include #include #include #include #include #include #include #define CMD_WRITE 0x02 /* Read data */ #define CMD_READ 0x03 /* Read data */ #define CMD_RDSTA 0x05 /* Read status register */ #define CMD_WREN 0x06 /* Write enable */ #define CMD_ESECT 0x20 /* Erase 4kB sector */ #define CMD_RSECR 0x48 /* Read security register */ #define CMD_WKUP 0xAB /* Release power down */ #define CMD_PDWN 0xB9 /* Power down */ #define CMD_ECHIP 0xC7 /* Full chip erase */ /* * Target-specific SPI interface functions, their implementation can be found * in source files "spiFlash_xxx.c" */ extern uint8_t spiFlash_SendRecv(uint8_t val); extern void spiFlash_init(); extern void spiFlash_terminate(); static const size_t PAGE_SIZE = 256; static const size_t SECT_SIZE = 4096; /** * \internal * Wait until an erase or write operation finishes. * * @param timeout: wait timeout, in ms. * @return zero on success, -EIO if timeout expires. */ static int waitUntilReady(uint32_t timeout) { // Each wait tick is 500us timeout *= 2; while(timeout > 0) { delayUs(500); timeout--; gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_RDSTA); uint8_t status = spiFlash_SendRecv(0x00); gpio_setPin(FLASH_CS); /* If busy flag is low, we're done */ if((status & 0x01) == 0) return 0; } return -EIO; } void W25Qx_init() { gpio_setMode(FLASH_CS, OUTPUT); gpio_setPin(FLASH_CS); spiFlash_init(); W25Qx_wakeup(); // TODO: Implement sleep to increase power saving } void W25Qx_terminate() { W25Qx_sleep(); gpio_setMode(FLASH_CS, INPUT); spiFlash_terminate(); } void W25Qx_wakeup() { gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_WKUP); gpio_setPin(FLASH_CS); } void W25Qx_sleep() { gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_PDWN); gpio_setPin(FLASH_CS); } ssize_t W25Qx_readSecurityRegister(uint32_t addr, void* buf, size_t len) { uint32_t addrBase = addr & 0x3000; uint32_t addrRange = addr & 0xCFFF; if((addrBase < 0x1000) || (addrBase > 0x3000)) return -1; /* Out of base */ if(addrRange > 0xFF) return -1; /* Out of range */ /* Keep 256-byte boundary to avoid wrap-around when reading */ size_t readLen = len; if((addrRange + len) > 0xFF) { readLen = 0xFF - (addrRange & 0xFF); } gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_RSECR); /* Command */ spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */ spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */ spiFlash_SendRecv(addr & 0xFF); /* Address low */ spiFlash_SendRecv(0x00); /* Dummy byte */ for(size_t i = 0; i < readLen; i++) { ((uint8_t *) buf)[i] = spiFlash_SendRecv(0x00); } gpio_setPin(FLASH_CS); return ((ssize_t) readLen); } int W25Qx_readData(uint32_t addr, void* buf, size_t len) { gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_READ); /* Command */ spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */ spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */ spiFlash_SendRecv(addr & 0xFF); /* Address low */ for(size_t i = 0; i < len; i++) { ((uint8_t *) buf)[i] = spiFlash_SendRecv(0x00); } gpio_setPin(FLASH_CS); return 0; } int W25Qx_erase(uint32_t addr, size_t size) { // Addr or size not aligned to sector size if(((addr % SECT_SIZE) != 0) || ((size % SECT_SIZE) != 0)) return -EINVAL; gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_WREN); /* Write enable */ gpio_setPin(FLASH_CS); delayUs(5); int ret = 0; while(size > 0) { gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_ESECT); /* Command */ spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */ spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */ spiFlash_SendRecv(addr & 0xFF); /* Address low */ gpio_setPin(FLASH_CS); ret = waitUntilReady(500); if(ret < 0) break; size -= SECT_SIZE; addr += SECT_SIZE; } return ret; } bool W25Qx_eraseChip() { gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_WREN); gpio_setPin(FLASH_CS); delayUs(5); gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_ECHIP); gpio_setPin(FLASH_CS); /* * Wait until erase terminates, timeout after 200s. */ int ret = waitUntilReady(200000); if(ret == 0) return true; return false; } ssize_t W25Qx_writePage(uint32_t addr, const void* buf, size_t len) { /* Keep page boundary to avoid wrap-around when writing */ size_t addrRange = addr & (PAGE_SIZE - 1); size_t writeLen = len; if((addrRange + len) > PAGE_SIZE) { writeLen = PAGE_SIZE - addrRange; } gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_WREN); /* Write enable */ gpio_setPin(FLASH_CS); delayUs(5); gpio_clearPin(FLASH_CS); spiFlash_SendRecv(CMD_WRITE); /* Command */ spiFlash_SendRecv((addr >> 16) & 0xFF); /* Address high */ spiFlash_SendRecv((addr >> 8) & 0xFF); /* Address middle */ spiFlash_SendRecv(addr & 0xFF); /* Address low */ for(size_t i = 0; i < writeLen; i++) { uint8_t value = ((uint8_t *) buf)[i]; (void) spiFlash_SendRecv(value); } gpio_setPin(FLASH_CS); /* * Wait until erase terminates, timeout after 500ms. */ int ret = waitUntilReady(500); if(ret < 0) return (ssize_t) ret; return writeLen; } int W25Qx_writeData(uint32_t addr, const void *buf, size_t len) { while(len > 0) { size_t toWrite = len; // Maximum single-shot write lenght is one page if(toWrite >= PAGE_SIZE) toWrite = PAGE_SIZE; ssize_t written = W25Qx_writePage(addr, buf, toWrite); if(written < 0) return (int) written; len -= (size_t) written; buf = ((const uint8_t *) buf) + (size_t) written; addr += (size_t) written; } return 0; } static const struct nvmParams W25Qx_params = { .write_size = 1, .erase_size = SECT_SIZE, .erase_cycles = 100000, .type = NVM_FLASH }; static int nvm_api_readSecReg(const struct nvmDevice *dev, uint32_t offset, void *data, size_t len) { (void) dev; return W25Qx_readSecurityRegister(offset, data, len); } static int nvm_api_read(const struct nvmDevice *dev, uint32_t offset, void *data, size_t len) { (void) dev; return W25Qx_readData(offset, data, len); } static int nvm_api_write(const struct nvmDevice *dev, uint32_t offset, const void *data, size_t len) { (void) dev; return W25Qx_writeData(offset, data, len); } static int nvm_api_erase(const struct nvmDevice *dev, uint32_t offset, size_t size) { (void) dev; return W25Qx_erase(offset, size); } static const struct nvmParams *nvm_api_params(const struct nvmDevice *dev) { (void) dev; return &W25Qx_params; } const struct nvmApi W25Qx_api = { .read = nvm_api_read, .write = nvm_api_write, .erase = nvm_api_erase, .sync = NULL, .params = nvm_api_params }; const struct nvmApi W25Qx_secReg_api = { .read = nvm_api_readSecReg, .write = NULL, .erase = NULL, .sync = NULL, .params = nvm_api_params };