OpenDroneMap-ODM/opendm/dem/commands.py

354 wiersze
13 KiB
Python
Executable File

import os
import sys
import rasterio
import numpy
import math
import time
import shutil
from opendm.system import run
from opendm import point_cloud
from opendm import io
from opendm import system
from opendm.concurrency import get_max_memory, parallel_map
from scipy import ndimage
from datetime import datetime
from opendm.vendor.gdal_fillnodata import main as gdal_fillnodata
from opendm import log
try:
import Queue as queue
except:
import queue
import threading
from .ground_rectification.rectify import run_rectification
from . import pdal
try:
# GDAL >= 3.3
from osgeo_utils.gdal_proximity import main as gdal_proximity
except ModuleNotFoundError:
# GDAL <= 3.2
try:
from osgeo.utils.gdal_proximity import main as gdal_proximity
except:
pass
def classify(lasFile, scalar, slope, threshold, window, verbose=False):
start = datetime.now()
try:
pdal.run_pdaltranslate_smrf(lasFile, lasFile, scalar, slope, threshold, window, verbose)
except:
log.ODM_WARNING("Error creating classified file %s" % lasFile)
log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start))
return lasFile
def rectify(lasFile, debug=False, reclassify_threshold=5, min_area=750, min_points=500):
start = datetime.now()
try:
# Currently, no Python 2 lib that supports reading and writing LAZ, so we will do it manually until ODM is migrated to Python 3
# When migration is done, we can move to pylas and avoid using PDAL for conversion
tempLasFile = os.path.join(os.path.dirname(lasFile), 'tmp.las')
# Convert LAZ to LAS
cmd = [
'pdal',
'translate',
'-i %s' % lasFile,
'-o %s' % tempLasFile
]
system.run(' '.join(cmd))
log.ODM_INFO("Rectifying {} using with [reclassify threshold: {}, min area: {}, min points: {}]".format(lasFile, reclassify_threshold, min_area, min_points))
run_rectification(
input=tempLasFile, output=tempLasFile, debug=debug, \
reclassify_plan='median', reclassify_threshold=reclassify_threshold, \
extend_plan='surrounding', extend_grid_distance=5, \
min_area=min_area, min_points=min_points)
# Convert LAS to LAZ
cmd = [
'pdal',
'translate',
'-i %s' % tempLasFile,
'-o %s' % lasFile
]
system.run(' '.join(cmd))
os.remove(tempLasFile)
except Exception as e:
raise Exception("Error rectifying ground in file %s: %s" % (lasFile, str(e)))
log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start))
return lasFile
error = None
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True,
outdir='', resolution=0.1, max_workers=1, max_tile_size=4096,
verbose=False, decimation=None, keep_unfilled_copy=False,
apply_smoothing=True):
""" Create DEM from multiple radii, and optionally gapfill """
global error
error = None
start = datetime.now()
if not os.path.exists(outdir):
log.ODM_INFO("Creating %s" % outdir)
os.mkdir(outdir)
extent = point_cloud.get_extent(input_point_cloud)
log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy']))
ext_width = extent['maxx'] - extent['minx']
ext_height = extent['maxy'] - extent['miny']
w, h = (int(math.ceil(ext_width / float(resolution))),
int(math.ceil(ext_height / float(resolution))))
# Set a floor, no matter the resolution parameter
# (sometimes a wrongly estimated scale of the model can cause the resolution
# to be set unrealistically low, causing errors)
RES_FLOOR = 64
if w < RES_FLOOR and h < RES_FLOOR:
prev_w, prev_h = w, h
if w >= h:
w, h = (RES_FLOOR, int(math.ceil(ext_height / ext_width * RES_FLOOR)))
else:
w, h = (int(math.ceil(ext_width / ext_height * RES_FLOOR)), RES_FLOOR)
floor_ratio = prev_w / float(w)
resolution *= floor_ratio
radiuses = [str(float(r) * floor_ratio) for r in radiuses]
log.ODM_WARNING("Really low resolution DEM requested %s will set floor at %s pixels. Resolution changed to %s. The scale of this reconstruction might be off." % ((prev_w, prev_h), RES_FLOOR, resolution))
final_dem_pixels = w * h
num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2))))
num_tiles = num_splits * num_splits
log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % ((h, w), max_tile_size, num_tiles))
tile_bounds_width = ext_width / float(num_splits)
tile_bounds_height = ext_height / float(num_splits)
tiles = []
for r in radiuses:
minx = extent['minx']
for x in range(num_splits):
miny = extent['miny']
if x == num_splits - 1:
maxx = extent['maxx']
else:
maxx = minx + tile_bounds_width
for y in range(num_splits):
if y == num_splits - 1:
maxy = extent['maxy']
else:
maxy = miny + tile_bounds_height
filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y))
tiles.append({
'radius': r,
'bounds': {
'minx': minx,
'maxx': maxx,
'miny': miny,
'maxy': maxy
},
'filename': filename
})
miny = maxy
minx = maxx
# Sort tiles by increasing radius
tiles.sort(key=lambda t: float(t['radius']), reverse=True)
def process_tile(q):
log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution))
d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds'])
if dem_type == 'dtm':
d = pdal.json_add_classification_filter(d, 2)
if decimation is not None:
d = pdal.json_add_decimation_filter(d, decimation)
pdal.json_add_readers(d, [input_point_cloud])
pdal.run_pipeline(d, verbose=verbose)
parallel_map(process_tile, tiles, max_workers)
output_file = "%s.tif" % dem_type
output_path = os.path.abspath(os.path.join(outdir, output_file))
# Verify tile results
for t in tiles:
if not os.path.exists(t['filename']):
raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename']))
# Create virtual raster
tiles_vrt_path = os.path.abspath(os.path.join(outdir, "tiles.vrt"))
tiles_file_list = os.path.abspath(os.path.join(outdir, "tiles_list.txt"))
with open(tiles_file_list, 'w') as f:
for t in tiles:
f.write(t['filename'] + '\n')
run('gdalbuildvrt -input_file_list "%s" "%s" ' % (tiles_file_list, tiles_vrt_path))
merged_vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt"))
geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'tiles.tmp.tif'))
geotiff_small_path = os.path.abspath(os.path.join(outdir, 'tiles.small.tif'))
geotiff_small_filled_path = os.path.abspath(os.path.join(outdir, 'tiles.small_filled.tif'))
geotiff_path = os.path.abspath(os.path.join(outdir, 'tiles.tif'))
# Build GeoTIFF
kwargs = {
'max_memory': get_max_memory(),
'threads': max_workers if max_workers else 'ALL_CPUS',
'tiles_vrt': tiles_vrt_path,
'merged_vrt': merged_vrt_path,
'geotiff': geotiff_path,
'geotiff_tmp': geotiff_tmp_path,
'geotiff_small': geotiff_small_path,
'geotiff_small_filled': geotiff_small_filled_path
}
if gapfill:
# Sometimes, for some reason gdal_fillnodata.py
# behaves strangely when reading data directly from a .VRT
# so we need to convert to GeoTIFF first.
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
'"{tiles_vrt}" "{geotiff_tmp}"'.format(**kwargs))
# Scale to 10% size
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
'-outsize 10% 0 '
'"{geotiff_tmp}" "{geotiff_small}"'.format(**kwargs))
# Fill scaled
gdal_fillnodata(['.',
'-co', 'NUM_THREADS=%s' % kwargs['threads'],
'-co', 'BIGTIFF=IF_SAFER',
'--config', 'GDAL_CACHE_MAX', str(kwargs['max_memory']) + '%',
'-b', '1',
'-of', 'GTiff',
kwargs['geotiff_small'], kwargs['geotiff_small_filled']])
# Merge filled scaled DEM with unfilled DEM using bilinear interpolation
run('gdalbuildvrt -resolution highest -r bilinear "%s" "%s" "%s"' % (merged_vrt_path, geotiff_small_filled_path, geotiff_tmp_path))
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co TILED=YES '
'-co BIGTIFF=IF_SAFER '
'-co COMPRESS=DEFLATE '
'--config GDAL_CACHEMAX {max_memory}% '
'"{merged_vrt}" "{geotiff}"'.format(**kwargs))
else:
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co TILED=YES '
'-co BIGTIFF=IF_SAFER '
'-co COMPRESS=DEFLATE '
'--config GDAL_CACHEMAX {max_memory}% '
'"{tiles_vrt}" "{geotiff}"'.format(**kwargs))
if apply_smoothing:
median_smoothing(geotiff_path, output_path)
os.remove(geotiff_path)
else:
os.replace(geotiff_path, output_path)
if os.path.exists(geotiff_tmp_path):
if not keep_unfilled_copy:
os.remove(geotiff_tmp_path)
else:
os.replace(geotiff_tmp_path, io.related_file_path(output_path, postfix=".unfilled"))
for cleanup_file in [tiles_vrt_path, tiles_file_list, merged_vrt_path, geotiff_small_path, geotiff_small_filled_path]:
if os.path.exists(cleanup_file): os.remove(cleanup_file)
for t in tiles:
if os.path.exists(t['filename']): os.remove(t['filename'])
log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
def compute_euclidean_map(geotiff_path, output_path, overwrite=False):
if not os.path.exists(geotiff_path):
log.ODM_WARNING("Cannot compute euclidean map (file does not exist: %s)" % geotiff_path)
return
nodata = -9999
with rasterio.open(geotiff_path) as f:
nodata = f.nodatavals[0]
if not os.path.exists(output_path) or overwrite:
log.ODM_INFO("Computing euclidean distance: %s" % output_path)
if gdal_proximity is not None:
try:
gdal_proximity(['gdal_proximity.py', geotiff_path, output_path, '-values', str(nodata)])
except Exception as e:
log.ODM_WARNING("Cannot compute euclidean distance: %s" % str(e))
if os.path.exists(output_path):
return output_path
else:
log.ODM_WARNING("Cannot compute euclidean distance file: %s" % output_path)
else:
log.ODM_WARNING("Cannot compute euclidean map, gdal_proximity is missing")
else:
log.ODM_INFO("Found a euclidean distance map: %s" % output_path)
return output_path
def median_smoothing(geotiff_path, output_path, smoothing_iterations=1):
""" Apply median smoothing """
start = datetime.now()
if not os.path.exists(geotiff_path):
raise Exception('File %s does not exist!' % geotiff_path)
log.ODM_INFO('Starting smoothing...')
with rasterio.open(geotiff_path) as img:
nodata = img.nodatavals[0]
dtype = img.dtypes[0]
arr = img.read()[0]
nodata_locs = numpy.where(arr == nodata)
# Median filter (careful, changing the value 5 might require tweaking)
# the lines below. There's another numpy function that takes care of
# these edge cases, but it's slower.
for i in range(smoothing_iterations):
log.ODM_INFO("Smoothing iteration %s" % str(i + 1))
arr = ndimage.median_filter(arr, size=9, output=dtype, mode='nearest')
# Median filter leaves a bunch of zeros in nodata areas
arr[nodata_locs] = nodata
# write output
with rasterio.open(output_path, 'w', **img.profile) as imgout:
imgout.write(arr, 1)
log.ODM_INFO('Completed smoothing to create %s in %s' % (output_path, datetime.now() - start))
return output_path