import os import sys import rasterio import numpy import math import time import shutil from opendm.system import run from opendm import point_cloud from opendm import io from opendm import system from opendm.concurrency import get_max_memory, parallel_map from scipy import ndimage from datetime import datetime from opendm.vendor.gdal_fillnodata import main as gdal_fillnodata from opendm import log try: import Queue as queue except: import queue import threading from .ground_rectification.rectify import run_rectification from . import pdal try: # GDAL >= 3.3 from osgeo_utils.gdal_proximity import main as gdal_proximity except ModuleNotFoundError: # GDAL <= 3.2 try: from osgeo.utils.gdal_proximity import main as gdal_proximity except: pass def classify(lasFile, scalar, slope, threshold, window, verbose=False): start = datetime.now() try: pdal.run_pdaltranslate_smrf(lasFile, lasFile, scalar, slope, threshold, window, verbose) except: log.ODM_WARNING("Error creating classified file %s" % lasFile) log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start)) return lasFile def rectify(lasFile, debug=False, reclassify_threshold=5, min_area=750, min_points=500): start = datetime.now() try: # Currently, no Python 2 lib that supports reading and writing LAZ, so we will do it manually until ODM is migrated to Python 3 # When migration is done, we can move to pylas and avoid using PDAL for conversion tempLasFile = os.path.join(os.path.dirname(lasFile), 'tmp.las') # Convert LAZ to LAS cmd = [ 'pdal', 'translate', '-i %s' % lasFile, '-o %s' % tempLasFile ] system.run(' '.join(cmd)) log.ODM_INFO("Rectifying {} using with [reclassify threshold: {}, min area: {}, min points: {}]".format(lasFile, reclassify_threshold, min_area, min_points)) run_rectification( input=tempLasFile, output=tempLasFile, debug=debug, \ reclassify_plan='median', reclassify_threshold=reclassify_threshold, \ extend_plan='surrounding', extend_grid_distance=5, \ min_area=min_area, min_points=min_points) # Convert LAS to LAZ cmd = [ 'pdal', 'translate', '-i %s' % tempLasFile, '-o %s' % lasFile ] system.run(' '.join(cmd)) os.remove(tempLasFile) except Exception as e: raise Exception("Error rectifying ground in file %s: %s" % (lasFile, str(e))) log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start)) return lasFile error = None def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True, outdir='', resolution=0.1, max_workers=1, max_tile_size=4096, verbose=False, decimation=None, keep_unfilled_copy=False, apply_smoothing=True): """ Create DEM from multiple radii, and optionally gapfill """ global error error = None start = datetime.now() if not os.path.exists(outdir): log.ODM_INFO("Creating %s" % outdir) os.mkdir(outdir) extent = point_cloud.get_extent(input_point_cloud) log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy'])) ext_width = extent['maxx'] - extent['minx'] ext_height = extent['maxy'] - extent['miny'] w, h = (int(math.ceil(ext_width / float(resolution))), int(math.ceil(ext_height / float(resolution)))) # Set a floor, no matter the resolution parameter # (sometimes a wrongly estimated scale of the model can cause the resolution # to be set unrealistically low, causing errors) RES_FLOOR = 64 if w < RES_FLOOR and h < RES_FLOOR: prev_w, prev_h = w, h if w >= h: w, h = (RES_FLOOR, int(math.ceil(ext_height / ext_width * RES_FLOOR))) else: w, h = (int(math.ceil(ext_width / ext_height * RES_FLOOR)), RES_FLOOR) floor_ratio = prev_w / float(w) resolution *= floor_ratio radiuses = [str(float(r) * floor_ratio) for r in radiuses] log.ODM_WARNING("Really low resolution DEM requested %s will set floor at %s pixels. Resolution changed to %s. The scale of this reconstruction might be off." % ((prev_w, prev_h), RES_FLOOR, resolution)) final_dem_pixels = w * h num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2)))) num_tiles = num_splits * num_splits log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % ((h, w), max_tile_size, num_tiles)) tile_bounds_width = ext_width / float(num_splits) tile_bounds_height = ext_height / float(num_splits) tiles = [] for r in radiuses: minx = extent['minx'] for x in range(num_splits): miny = extent['miny'] if x == num_splits - 1: maxx = extent['maxx'] else: maxx = minx + tile_bounds_width for y in range(num_splits): if y == num_splits - 1: maxy = extent['maxy'] else: maxy = miny + tile_bounds_height filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y)) tiles.append({ 'radius': r, 'bounds': { 'minx': minx, 'maxx': maxx, 'miny': miny, 'maxy': maxy }, 'filename': filename }) miny = maxy minx = maxx # Sort tiles by increasing radius tiles.sort(key=lambda t: float(t['radius']), reverse=True) def process_tile(q): log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution)) d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds']) if dem_type == 'dtm': d = pdal.json_add_classification_filter(d, 2) if decimation is not None: d = pdal.json_add_decimation_filter(d, decimation) pdal.json_add_readers(d, [input_point_cloud]) pdal.run_pipeline(d, verbose=verbose) parallel_map(process_tile, tiles, max_workers) output_file = "%s.tif" % dem_type output_path = os.path.abspath(os.path.join(outdir, output_file)) # Verify tile results for t in tiles: if not os.path.exists(t['filename']): raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename'])) # Create virtual raster tiles_vrt_path = os.path.abspath(os.path.join(outdir, "tiles.vrt")) tiles_file_list = os.path.abspath(os.path.join(outdir, "tiles_list.txt")) with open(tiles_file_list, 'w') as f: for t in tiles: f.write(t['filename'] + '\n') run('gdalbuildvrt -input_file_list "%s" "%s" ' % (tiles_file_list, tiles_vrt_path)) merged_vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt")) geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'tiles.tmp.tif')) geotiff_small_path = os.path.abspath(os.path.join(outdir, 'tiles.small.tif')) geotiff_small_filled_path = os.path.abspath(os.path.join(outdir, 'tiles.small_filled.tif')) geotiff_path = os.path.abspath(os.path.join(outdir, 'tiles.tif')) # Build GeoTIFF kwargs = { 'max_memory': get_max_memory(), 'threads': max_workers if max_workers else 'ALL_CPUS', 'tiles_vrt': tiles_vrt_path, 'merged_vrt': merged_vrt_path, 'geotiff': geotiff_path, 'geotiff_tmp': geotiff_tmp_path, 'geotiff_small': geotiff_small_path, 'geotiff_small_filled': geotiff_small_filled_path } if gapfill: # Sometimes, for some reason gdal_fillnodata.py # behaves strangely when reading data directly from a .VRT # so we need to convert to GeoTIFF first. run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co BIGTIFF=IF_SAFER ' '--config GDAL_CACHEMAX {max_memory}% ' '"{tiles_vrt}" "{geotiff_tmp}"'.format(**kwargs)) # Scale to 10% size run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co BIGTIFF=IF_SAFER ' '--config GDAL_CACHEMAX {max_memory}% ' '-outsize 10% 0 ' '"{geotiff_tmp}" "{geotiff_small}"'.format(**kwargs)) # Fill scaled gdal_fillnodata(['.', '-co', 'NUM_THREADS=%s' % kwargs['threads'], '-co', 'BIGTIFF=IF_SAFER', '--config', 'GDAL_CACHE_MAX', str(kwargs['max_memory']) + '%', '-b', '1', '-of', 'GTiff', kwargs['geotiff_small'], kwargs['geotiff_small_filled']]) # Merge filled scaled DEM with unfilled DEM using bilinear interpolation run('gdalbuildvrt -resolution highest -r bilinear "%s" "%s" "%s"' % (merged_vrt_path, geotiff_small_filled_path, geotiff_tmp_path)) run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co TILED=YES ' '-co BIGTIFF=IF_SAFER ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '"{merged_vrt}" "{geotiff}"'.format(**kwargs)) else: run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co TILED=YES ' '-co BIGTIFF=IF_SAFER ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '"{tiles_vrt}" "{geotiff}"'.format(**kwargs)) if apply_smoothing: median_smoothing(geotiff_path, output_path) os.remove(geotiff_path) else: os.replace(geotiff_path, output_path) if os.path.exists(geotiff_tmp_path): if not keep_unfilled_copy: os.remove(geotiff_tmp_path) else: os.replace(geotiff_tmp_path, io.related_file_path(output_path, postfix=".unfilled")) for cleanup_file in [tiles_vrt_path, tiles_file_list, merged_vrt_path, geotiff_small_path, geotiff_small_filled_path]: if os.path.exists(cleanup_file): os.remove(cleanup_file) for t in tiles: if os.path.exists(t['filename']): os.remove(t['filename']) log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start)) def compute_euclidean_map(geotiff_path, output_path, overwrite=False): if not os.path.exists(geotiff_path): log.ODM_WARNING("Cannot compute euclidean map (file does not exist: %s)" % geotiff_path) return nodata = -9999 with rasterio.open(geotiff_path) as f: nodata = f.nodatavals[0] if not os.path.exists(output_path) or overwrite: log.ODM_INFO("Computing euclidean distance: %s" % output_path) if gdal_proximity is not None: try: gdal_proximity(['gdal_proximity.py', geotiff_path, output_path, '-values', str(nodata)]) except Exception as e: log.ODM_WARNING("Cannot compute euclidean distance: %s" % str(e)) if os.path.exists(output_path): return output_path else: log.ODM_WARNING("Cannot compute euclidean distance file: %s" % output_path) else: log.ODM_WARNING("Cannot compute euclidean map, gdal_proximity is missing") else: log.ODM_INFO("Found a euclidean distance map: %s" % output_path) return output_path def median_smoothing(geotiff_path, output_path, smoothing_iterations=1): """ Apply median smoothing """ start = datetime.now() if not os.path.exists(geotiff_path): raise Exception('File %s does not exist!' % geotiff_path) log.ODM_INFO('Starting smoothing...') with rasterio.open(geotiff_path) as img: nodata = img.nodatavals[0] dtype = img.dtypes[0] arr = img.read()[0] nodata_locs = numpy.where(arr == nodata) # Median filter (careful, changing the value 5 might require tweaking) # the lines below. There's another numpy function that takes care of # these edge cases, but it's slower. for i in range(smoothing_iterations): log.ODM_INFO("Smoothing iteration %s" % str(i + 1)) arr = ndimage.median_filter(arr, size=9, output=dtype, mode='nearest') # Median filter leaves a bunch of zeros in nodata areas arr[nodata_locs] = nodata # write output with rasterio.open(output_path, 'w', **img.profile) as imgout: imgout.write(arr, 1) log.ODM_INFO('Completed smoothing to create %s in %s' % (output_path, datetime.now() - start)) return output_path