OpenDroneMap-ODM/opendm/dem/commands.py

354 wiersze
13 KiB
Python
Czysty Zwykły widok Historia

import os
import sys
import rasterio
import numpy
import math
import time
import shutil
from opendm.system import run
from opendm import point_cloud
from opendm import io
from opendm import system
from opendm.concurrency import get_max_memory, parallel_map
from scipy import ndimage
from datetime import datetime
from opendm.vendor.gdal_fillnodata import main as gdal_fillnodata
from opendm import log
try:
import Queue as queue
except:
import queue
import threading
from .ground_rectification.rectify import run_rectification
from . import pdal
2022-05-31 14:50:50 +00:00
try:
# GDAL >= 3.3
from osgeo_utils.gdal_proximity import main as gdal_proximity
except ModuleNotFoundError:
# GDAL <= 3.2
try:
from osgeo.utils.gdal_proximity import main as gdal_proximity
except:
pass
def classify(lasFile, scalar, slope, threshold, window, verbose=False):
start = datetime.now()
try:
pdal.run_pdaltranslate_smrf(lasFile, lasFile, scalar, slope, threshold, window, verbose)
except:
log.ODM_WARNING("Error creating classified file %s" % lasFile)
log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start))
return lasFile
def rectify(lasFile, debug=False, reclassify_threshold=5, min_area=750, min_points=500):
start = datetime.now()
try:
# Currently, no Python 2 lib that supports reading and writing LAZ, so we will do it manually until ODM is migrated to Python 3
# When migration is done, we can move to pylas and avoid using PDAL for conversion
tempLasFile = os.path.join(os.path.dirname(lasFile), 'tmp.las')
# Convert LAZ to LAS
cmd = [
'pdal',
'translate',
'-i %s' % lasFile,
'-o %s' % tempLasFile
]
system.run(' '.join(cmd))
log.ODM_INFO("Rectifying {} using with [reclassify threshold: {}, min area: {}, min points: {}]".format(lasFile, reclassify_threshold, min_area, min_points))
run_rectification(
input=tempLasFile, output=tempLasFile, debug=debug, \
reclassify_plan='median', reclassify_threshold=reclassify_threshold, \
extend_plan='surrounding', extend_grid_distance=5, \
min_area=min_area, min_points=min_points)
# Convert LAS to LAZ
cmd = [
'pdal',
'translate',
'-i %s' % tempLasFile,
'-o %s' % lasFile
]
system.run(' '.join(cmd))
os.remove(tempLasFile)
except Exception as e:
raise Exception("Error rectifying ground in file %s: %s" % (lasFile, str(e)))
log.ODM_INFO('Created %s in %s' % (lasFile, datetime.now() - start))
return lasFile
error = None
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True,
outdir='', resolution=0.1, max_workers=1, max_tile_size=4096,
verbose=False, decimation=None, keep_unfilled_copy=False,
apply_smoothing=True):
""" Create DEM from multiple radii, and optionally gapfill """
global error
error = None
start = datetime.now()
if not os.path.exists(outdir):
log.ODM_INFO("Creating %s" % outdir)
os.mkdir(outdir)
extent = point_cloud.get_extent(input_point_cloud)
log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy']))
ext_width = extent['maxx'] - extent['minx']
ext_height = extent['maxy'] - extent['miny']
w, h = (int(math.ceil(ext_width / float(resolution))),
int(math.ceil(ext_height / float(resolution))))
# Set a floor, no matter the resolution parameter
# (sometimes a wrongly estimated scale of the model can cause the resolution
# to be set unrealistically low, causing errors)
RES_FLOOR = 64
if w < RES_FLOOR and h < RES_FLOOR:
prev_w, prev_h = w, h
if w >= h:
w, h = (RES_FLOOR, int(math.ceil(ext_height / ext_width * RES_FLOOR)))
else:
w, h = (int(math.ceil(ext_width / ext_height * RES_FLOOR)), RES_FLOOR)
floor_ratio = prev_w / float(w)
resolution *= floor_ratio
radiuses = [str(float(r) * floor_ratio) for r in radiuses]
log.ODM_WARNING("Really low resolution DEM requested %s will set floor at %s pixels. Resolution changed to %s. The scale of this reconstruction might be off." % ((prev_w, prev_h), RES_FLOOR, resolution))
final_dem_pixels = w * h
num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2))))
num_tiles = num_splits * num_splits
log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % ((h, w), max_tile_size, num_tiles))
tile_bounds_width = ext_width / float(num_splits)
tile_bounds_height = ext_height / float(num_splits)
tiles = []
for r in radiuses:
minx = extent['minx']
for x in range(num_splits):
miny = extent['miny']
if x == num_splits - 1:
maxx = extent['maxx']
else:
maxx = minx + tile_bounds_width
for y in range(num_splits):
if y == num_splits - 1:
maxy = extent['maxy']
else:
maxy = miny + tile_bounds_height
filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y))
tiles.append({
'radius': r,
'bounds': {
'minx': minx,
'maxx': maxx,
'miny': miny,
'maxy': maxy
},
'filename': filename
})
miny = maxy
minx = maxx
# Sort tiles by increasing radius
tiles.sort(key=lambda t: float(t['radius']), reverse=True)
def process_tile(q):
log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution))
d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds'])
if dem_type == 'dtm':
d = pdal.json_add_classification_filter(d, 2)
if decimation is not None:
d = pdal.json_add_decimation_filter(d, decimation)
pdal.json_add_readers(d, [input_point_cloud])
pdal.run_pipeline(d, verbose=verbose)
parallel_map(process_tile, tiles, max_workers)
output_file = "%s.tif" % dem_type
output_path = os.path.abspath(os.path.join(outdir, output_file))
# Verify tile results
for t in tiles:
if not os.path.exists(t['filename']):
raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename']))
2022-01-07 20:50:22 +00:00
# Create virtual raster
tiles_vrt_path = os.path.abspath(os.path.join(outdir, "tiles.vrt"))
2021-06-09 18:30:46 +00:00
tiles_file_list = os.path.abspath(os.path.join(outdir, "tiles_list.txt"))
with open(tiles_file_list, 'w') as f:
for t in tiles:
f.write(t['filename'] + '\n')
run('gdalbuildvrt -input_file_list "%s" "%s" ' % (tiles_file_list, tiles_vrt_path))
merged_vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt"))
geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'tiles.tmp.tif'))
geotiff_small_path = os.path.abspath(os.path.join(outdir, 'tiles.small.tif'))
geotiff_small_filled_path = os.path.abspath(os.path.join(outdir, 'tiles.small_filled.tif'))
geotiff_path = os.path.abspath(os.path.join(outdir, 'tiles.tif'))
# Build GeoTIFF
kwargs = {
'max_memory': get_max_memory(),
'threads': max_workers if max_workers else 'ALL_CPUS',
'tiles_vrt': tiles_vrt_path,
'merged_vrt': merged_vrt_path,
'geotiff': geotiff_path,
'geotiff_tmp': geotiff_tmp_path,
'geotiff_small': geotiff_small_path,
'geotiff_small_filled': geotiff_small_filled_path
}
if gapfill:
# Sometimes, for some reason gdal_fillnodata.py
# behaves strangely when reading data directly from a .VRT
# so we need to convert to GeoTIFF first.
run('gdal_translate '
'-co NUM_THREADS={threads} '
2020-11-24 13:25:12 +00:00
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
2021-05-17 17:25:52 +00:00
'"{tiles_vrt}" "{geotiff_tmp}"'.format(**kwargs))
# Scale to 10% size
run('gdal_translate '
'-co NUM_THREADS={threads} '
2020-11-24 13:25:12 +00:00
'-co BIGTIFF=IF_SAFER '
'--config GDAL_CACHEMAX {max_memory}% '
'-outsize 10% 0 '
2021-05-17 17:25:52 +00:00
'"{geotiff_tmp}" "{geotiff_small}"'.format(**kwargs))
# Fill scaled
2021-05-04 17:04:13 +00:00
gdal_fillnodata(['.',
'-co', 'NUM_THREADS=%s' % kwargs['threads'],
'-co', 'BIGTIFF=IF_SAFER',
'--config', 'GDAL_CACHE_MAX', str(kwargs['max_memory']) + '%',
'-b', '1',
'-of', 'GTiff',
kwargs['geotiff_small'], kwargs['geotiff_small_filled']])
# Merge filled scaled DEM with unfilled DEM using bilinear interpolation
run('gdalbuildvrt -resolution highest -r bilinear "%s" "%s" "%s"' % (merged_vrt_path, geotiff_small_filled_path, geotiff_tmp_path))
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co TILED=YES '
2020-11-24 13:25:12 +00:00
'-co BIGTIFF=IF_SAFER '
'-co COMPRESS=DEFLATE '
'--config GDAL_CACHEMAX {max_memory}% '
2021-05-17 17:25:52 +00:00
'"{merged_vrt}" "{geotiff}"'.format(**kwargs))
else:
run('gdal_translate '
'-co NUM_THREADS={threads} '
'-co TILED=YES '
2020-11-24 13:25:12 +00:00
'-co BIGTIFF=IF_SAFER '
'-co COMPRESS=DEFLATE '
'--config GDAL_CACHEMAX {max_memory}% '
2021-05-17 17:25:52 +00:00
'"{tiles_vrt}" "{geotiff}"'.format(**kwargs))
if apply_smoothing:
median_smoothing(geotiff_path, output_path)
os.remove(geotiff_path)
else:
2021-05-04 18:46:55 +00:00
os.replace(geotiff_path, output_path)
if os.path.exists(geotiff_tmp_path):
if not keep_unfilled_copy:
os.remove(geotiff_tmp_path)
else:
2021-05-04 18:46:55 +00:00
os.replace(geotiff_tmp_path, io.related_file_path(output_path, postfix=".unfilled"))
2021-06-09 18:30:46 +00:00
for cleanup_file in [tiles_vrt_path, tiles_file_list, merged_vrt_path, geotiff_small_path, geotiff_small_filled_path]:
if os.path.exists(cleanup_file): os.remove(cleanup_file)
for t in tiles:
if os.path.exists(t['filename']): os.remove(t['filename'])
log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
def compute_euclidean_map(geotiff_path, output_path, overwrite=False):
if not os.path.exists(geotiff_path):
log.ODM_WARNING("Cannot compute euclidean map (file does not exist: %s)" % geotiff_path)
return
nodata = -9999
with rasterio.open(geotiff_path) as f:
nodata = f.nodatavals[0]
if not os.path.exists(output_path) or overwrite:
log.ODM_INFO("Computing euclidean distance: %s" % output_path)
2022-05-31 14:50:50 +00:00
if gdal_proximity is not None:
try:
gdal_proximity(['gdal_proximity.py', geotiff_path, output_path, '-values', str(nodata)])
except Exception as e:
log.ODM_WARNING("Cannot compute euclidean distance: %s" % str(e))
if os.path.exists(output_path):
return output_path
else:
log.ODM_WARNING("Cannot compute euclidean distance file: %s" % output_path)
else:
2022-05-31 14:50:50 +00:00
log.ODM_WARNING("Cannot compute euclidean map, gdal_proximity is missing")
else:
log.ODM_INFO("Found a euclidean distance map: %s" % output_path)
return output_path
def median_smoothing(geotiff_path, output_path, smoothing_iterations=1):
""" Apply median smoothing """
start = datetime.now()
if not os.path.exists(geotiff_path):
raise Exception('File %s does not exist!' % geotiff_path)
log.ODM_INFO('Starting smoothing...')
with rasterio.open(geotiff_path) as img:
nodata = img.nodatavals[0]
dtype = img.dtypes[0]
arr = img.read()[0]
2022-01-07 20:50:22 +00:00
nodata_locs = numpy.where(arr == nodata)
# Median filter (careful, changing the value 5 might require tweaking)
# the lines below. There's another numpy function that takes care of
# these edge cases, but it's slower.
for i in range(smoothing_iterations):
log.ODM_INFO("Smoothing iteration %s" % str(i + 1))
arr = ndimage.median_filter(arr, size=9, output=dtype, mode='nearest')
# Median filter leaves a bunch of zeros in nodata areas
2022-01-07 20:50:22 +00:00
arr[nodata_locs] = nodata
# write output
with rasterio.open(output_path, 'w', **img.profile) as imgout:
imgout.write(arr, 1)
log.ODM_INFO('Completed smoothing to create %s in %s' % (output_path, datetime.now() - start))
return output_path