tbeam-helium-mapper/main/SparkFun_Ublox_Arduino_Libr...

933 wiersze
55 KiB
C++

/*
This is a library written for the Ublox ZED-F9P and NEO-M8P-2
Updated: June 16th, 2020
This copy includes changes by @blazczak and @geeksville to
provide support for the older series 6 and 7 modules.
Disclaimer: SparkFun has not verified this copy of the library on either series 6 or 7.
It should work, it looks like it will work, but we have no way of confirming this.
We cannot guarantee that it will work reliably in your application.
Do you like this library? Help support SparkFun. Buy a board!
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15005
https://www.sparkfun.com/products/15733
https://www.sparkfun.com/products/15193
https://www.sparkfun.com/products/15210
Original library written by Nathan Seidle @ SparkFun Electronics, September 6th, 2018
This library handles configuring and handling the responses
from a Ublox GPS module. Works with most modules from Ublox including
the Zed-F9P, NEO-M8P-2, NEO-M9N, ZOE-M8Q, SAM-M8Q, and many others.
https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library
Development environment specifics:
Arduino IDE 1.8.5
SparkFun code, firmware, and software is released under the MIT License(http://opensource.org/licenses/MIT).
The MIT License (MIT)
Copyright (c) 2016 SparkFun Electronics
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef SPARKFUN_UBLOX_ARDUINO_LIBRARY_H
#define SPARKFUN_UBLOX_ARDUINO_LIBRARY_H
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <Wire.h>
//Platform specific configurations
//Define the size of the I2C buffer based on the platform the user has
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
#if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__)
//I2C_BUFFER_LENGTH is defined in Wire.H
#define I2C_BUFFER_LENGTH BUFFER_LENGTH
#elif defined(__SAMD21G18A__)
//SAMD21 uses RingBuffer.h
#define I2C_BUFFER_LENGTH SERIAL_BUFFER_SIZE
//#elif __MK20DX256__
//Teensy
#endif
#ifndef I2C_BUFFER_LENGTH
//The catch-all default is 32
#define I2C_BUFFER_LENGTH 32
//#define I2C_BUFFER_LENGTH 16 //For testing on Artemis
#endif
// Define Serial for SparkFun SAMD based boards.
// Boards like the RedBoard Turbo use SerialUSB (not Serial).
// But other boards like the SAMD51 Thing Plus use Serial (not SerialUSB).
// The next nine lines let the code compile cleanly on as many SAMD boards as possible.
#if defined(ARDUINO_ARCH_SAMD) // Is this a SAMD board?
#if defined(USB_VID) // Is the USB Vendor ID defined?
#if (USB_VID == 0x1B4F) // Is this a SparkFun board?
#if !defined(ARDUINO_SAMD51_THING_PLUS) // If it is not a SAMD51 Thing Plus
#define Serial SerialUSB // Define Serial as SerialUSB
#endif
#endif
#endif
#endif
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
//Define a digital pin to aid checksum failure capture and analysis
//Leave set to -1 if not needed
const int checksumFailurePin = -1;
// Global Status Returns
typedef enum
{
SFE_UBLOX_STATUS_SUCCESS,
SFE_UBLOX_STATUS_FAIL,
SFE_UBLOX_STATUS_CRC_FAIL,
SFE_UBLOX_STATUS_TIMEOUT,
SFE_UBLOX_STATUS_COMMAND_NACK, // Indicates that the command was unrecognised, invalid or that the module is too busy to respond
SFE_UBLOX_STATUS_OUT_OF_RANGE,
SFE_UBLOX_STATUS_INVALID_ARG,
SFE_UBLOX_STATUS_INVALID_OPERATION,
SFE_UBLOX_STATUS_MEM_ERR,
SFE_UBLOX_STATUS_HW_ERR,
SFE_UBLOX_STATUS_DATA_SENT, // This indicates that a 'set' was successful
SFE_UBLOX_STATUS_DATA_RECEIVED, // This indicates that a 'get' (poll) was successful
SFE_UBLOX_STATUS_I2C_COMM_FAILURE,
SFE_UBLOX_STATUS_DATA_OVERWRITTEN // This is an error - the data was valid but has been or _is being_ overwritten by another packet
} sfe_ublox_status_e;
// ubxPacket validity
typedef enum
{
SFE_UBLOX_PACKET_VALIDITY_NOT_VALID,
SFE_UBLOX_PACKET_VALIDITY_VALID,
SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED,
SFE_UBLOX_PACKET_NOTACKNOWLEDGED // This indicates that we received a NACK
} sfe_ublox_packet_validity_e;
// Identify which packet buffer is in use:
// packetCfg (or a custom packet), packetAck or packetBuf
typedef enum
{
SFE_UBLOX_PACKET_PACKETCFG,
SFE_UBLOX_PACKET_PACKETACK,
SFE_UBLOX_PACKET_PACKETBUF
} sfe_ublox_packet_buffer_e;
//Registers
const uint8_t UBX_SYNCH_1 = 0xB5;
const uint8_t UBX_SYNCH_2 = 0x62;
//The following are UBX Class IDs. Descriptions taken from ZED-F9P Interface Description Document page 32, NEO-M8P Interface Description page 145
const uint8_t UBX_CLASS_NAV = 0x01; //Navigation Results Messages: Position, Speed, Time, Acceleration, Heading, DOP, SVs used
const uint8_t UBX_CLASS_RXM = 0x02; //Receiver Manager Messages: Satellite Status, RTC Status
const uint8_t UBX_CLASS_INF = 0x04; //Information Messages: Printf-Style Messages, with IDs such as Error, Warning, Notice
const uint8_t UBX_CLASS_ACK = 0x05; //Ack/Nak Messages: Acknowledge or Reject messages to UBX-CFG input messages
const uint8_t UBX_CLASS_CFG = 0x06; //Configuration Input Messages: Configure the receiver.
const uint8_t UBX_CLASS_UPD = 0x09; //Firmware Update Messages: Memory/Flash erase/write, Reboot, Flash identification, etc.
const uint8_t UBX_CLASS_MON = 0x0A; //Monitoring Messages: Communication Status, CPU Load, Stack Usage, Task Status
const uint8_t UBX_CLASS_AID = 0x0B; //(NEO-M8P ONLY!!!) AssistNow Aiding Messages: Ephemeris, Almanac, other A-GPS data input
const uint8_t UBX_CLASS_TIM = 0x0D; //Timing Messages: Time Pulse Output, Time Mark Results
const uint8_t UBX_CLASS_ESF = 0x10; //(NEO-M8P ONLY!!!) External Sensor Fusion Messages: External Sensor Measurements and Status Information
const uint8_t UBX_CLASS_MGA = 0x13; //Multiple GNSS Assistance Messages: Assistance data for various GNSS
const uint8_t UBX_CLASS_LOG = 0x21; //Logging Messages: Log creation, deletion, info and retrieval
const uint8_t UBX_CLASS_SEC = 0x27; //Security Feature Messages
const uint8_t UBX_CLASS_HNR = 0x28; //(NEO-M8P ONLY!!!) High Rate Navigation Results Messages: High rate time, position speed, heading
const uint8_t UBX_CLASS_NMEA = 0xF0; //NMEA Strings: standard NMEA strings
//The following are used for configuration. Descriptions are from the ZED-F9P Interface Description pg 33-34 and NEO-M9N Interface Description pg 47-48
const uint8_t UBX_CFG_ANT = 0x13; //Antenna Control Settings. Used to configure the antenna control settings
const uint8_t UBX_CFG_BATCH = 0x93; //Get/set data batching configuration.
const uint8_t UBX_CFG_CFG = 0x09; //Clear, Save, and Load Configurations. Used to save current configuration
const uint8_t UBX_CFG_DAT = 0x06; //Set User-defined Datum or The currently defined Datum
const uint8_t UBX_CFG_DGNSS = 0x70; //DGNSS configuration
const uint8_t UBX_CFG_GEOFENCE = 0x69; //Geofencing configuration. Used to configure a geofence
const uint8_t UBX_CFG_GNSS = 0x3E; //GNSS system configuration
const uint8_t UBX_CFG_INF = 0x02; //Depending on packet length, either: poll configuration for one protocol, or information message configuration
const uint8_t UBX_CFG_ITFM = 0x39; //Jamming/Interference Monitor configuration
const uint8_t UBX_CFG_LOGFILTER = 0x47; //Data Logger Configuration
const uint8_t UBX_CFG_MSG = 0x01; //Poll a message configuration, or Set Message Rate(s), or Set Message Rate
const uint8_t UBX_CFG_NAV5 = 0x24; //Navigation Engine Settings. Used to configure the navigation engine including the dynamic model.
const uint8_t UBX_CFG_NAVX5 = 0x23; //Navigation Engine Expert Settings
const uint8_t UBX_CFG_NMEA = 0x17; //Extended NMEA protocol configuration V1
const uint8_t UBX_CFG_ODO = 0x1E; //Odometer, Low-speed COG Engine Settings
const uint8_t UBX_CFG_PM2 = 0x3B; //Extended power management configuration
const uint8_t UBX_CFG_PMS = 0x86; //Power mode setup
const uint8_t UBX_CFG_PRT = 0x00; //Used to configure port specifics. Polls the configuration for one I/O Port, or Port configuration for UART ports, or Port configuration for USB port, or Port configuration for SPI port, or Port configuration for DDC port
const uint8_t UBX_CFG_PWR = 0x57; //Put receiver in a defined power state
const uint8_t UBX_CFG_RATE = 0x08; //Navigation/Measurement Rate Settings. Used to set port baud rates.
const uint8_t UBX_CFG_RINV = 0x34; //Contents of Remote Inventory
const uint8_t UBX_CFG_RST = 0x04; //Reset Receiver / Clear Backup Data Structures. Used to reset device.
const uint8_t UBX_CFG_RXM = 0x11; //RXM configuration
const uint8_t UBX_CFG_SBAS = 0x16; //SBAS configuration
const uint8_t UBX_CFG_TMODE3 = 0x71; //Time Mode Settings 3. Used to enable Survey In Mode
const uint8_t UBX_CFG_TP5 = 0x31; //Time Pulse Parameters
const uint8_t UBX_CFG_USB = 0x1B; //USB Configuration
const uint8_t UBX_CFG_VALDEL = 0x8C; //Used for config of higher version Ublox modules (ie protocol v27 and above). Deletes values corresponding to provided keys/ provided keys with a transaction
const uint8_t UBX_CFG_VALGET = 0x8B; //Used for config of higher version Ublox modules (ie protocol v27 and above). Configuration Items
const uint8_t UBX_CFG_VALSET = 0x8A; //Used for config of higher version Ublox modules (ie protocol v27 and above). Sets values corresponding to provided key-value pairs/ provided key-value pairs within a transaction.
//The following are used to enable NMEA messages. Descriptions come from the NMEA messages overview in the ZED-F9P Interface Description
const uint8_t UBX_NMEA_MSB = 0xF0; //All NMEA enable commands have 0xF0 as MSB
const uint8_t UBX_NMEA_DTM = 0x0A; //GxDTM (datum reference)
const uint8_t UBX_NMEA_GAQ = 0x45; //GxGAQ (poll a standard message (if the current talker ID is GA))
const uint8_t UBX_NMEA_GBQ = 0x44; //GxGBQ (poll a standard message (if the current Talker ID is GB))
const uint8_t UBX_NMEA_GBS = 0x09; //GxGBS (GNSS satellite fault detection)
const uint8_t UBX_NMEA_GGA = 0x00; //GxGGA (Global positioning system fix data)
const uint8_t UBX_NMEA_GLL = 0x01; //GxGLL (latitude and long, whith time of position fix and status)
const uint8_t UBX_NMEA_GLQ = 0x43; //GxGLQ (poll a standard message (if the current Talker ID is GL))
const uint8_t UBX_NMEA_GNQ = 0x42; //GxGNQ (poll a standard message (if the current Talker ID is GN))
const uint8_t UBX_NMEA_GNS = 0x0D; //GxGNS (GNSS fix data)
const uint8_t UBX_NMEA_GPQ = 0x040; //GxGPQ (poll a standard message (if the current Talker ID is GP))
const uint8_t UBX_NMEA_GRS = 0x06; //GxGRS (GNSS range residuals)
const uint8_t UBX_NMEA_GSA = 0x02; //GxGSA (GNSS DOP and Active satellites)
const uint8_t UBX_NMEA_GST = 0x07; //GxGST (GNSS Pseudo Range Error Statistics)
const uint8_t UBX_NMEA_GSV = 0x03; //GxGSV (GNSS satellites in view)
const uint8_t UBX_NMEA_RMC = 0x04; //GxRMC (Recommended minimum data)
const uint8_t UBX_NMEA_TXT = 0x41; //GxTXT (text transmission)
const uint8_t UBX_NMEA_VLW = 0x0F; //GxVLW (dual ground/water distance)
const uint8_t UBX_NMEA_VTG = 0x05; //GxVTG (course over ground and Ground speed)
const uint8_t UBX_NMEA_ZDA = 0x08; //GxZDA (Time and Date)
//The following are used to configure the NMEA protocol main talker ID and GSV talker ID
const uint8_t UBX_NMEA_MAINTALKERID_NOTOVERRIDDEN = 0x00; //main talker ID is system dependent
const uint8_t UBX_NMEA_MAINTALKERID_GP = 0x01; //main talker ID is GPS
const uint8_t UBX_NMEA_MAINTALKERID_GL = 0x02; //main talker ID is GLONASS
const uint8_t UBX_NMEA_MAINTALKERID_GN = 0x03; //main talker ID is combined receiver
const uint8_t UBX_NMEA_MAINTALKERID_GA = 0x04; //main talker ID is Galileo
const uint8_t UBX_NMEA_MAINTALKERID_GB = 0x05; //main talker ID is BeiDou
const uint8_t UBX_NMEA_GSVTALKERID_GNSS = 0x00; //GNSS specific Talker ID (as defined by NMEA)
const uint8_t UBX_NMEA_GSVTALKERID_MAIN = 0x01; //use the main Talker ID
//The following are used to configure INF UBX messages (information messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 34)
const uint8_t UBX_INF_CLASS = 0x04; //All INF messages have 0x04 as the class
const uint8_t UBX_INF_DEBUG = 0x04; //ASCII output with debug contents
const uint8_t UBX_INF_ERROR = 0x00; //ASCII output with error contents
const uint8_t UBX_INF_NOTICE = 0x02; //ASCII output with informational contents
const uint8_t UBX_INF_TEST = 0x03; //ASCII output with test contents
const uint8_t UBX_INF_WARNING = 0x01; //ASCII output with warning contents
//The following are used to configure LOG UBX messages (loggings messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 34)
const uint8_t UBX_LOG_CREATE = 0x07; //Create Log File
const uint8_t UBX_LOG_ERASE = 0x03; //Erase Logged Data
const uint8_t UBX_LOG_FINDTIME = 0x0E; //Find index of a log entry based on a given time, or response to FINDTIME requested
const uint8_t UBX_LOG_INFO = 0x08; //Poll for log information, or Log information
const uint8_t UBX_LOG_RETRIEVEPOSEXTRA = 0x0F; //Odometer log entry
const uint8_t UBX_LOG_RETRIEVEPOS = 0x0B; //Position fix log entry
const uint8_t UBX_LOG_RETRIEVESTRING = 0x0D; //Byte string log entry
const uint8_t UBX_LOG_RETRIEVE = 0x09; //Request log data
const uint8_t UBX_LOG_STRING = 0x04; //Store arbitrary string on on-board flash
//The following are used to configure MGA UBX messages (Multiple GNSS Assistance Messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 34)
const uint8_t UBX_MGA_ACK_DATA0 = 0x60; //Multiple GNSS Acknowledge message
const uint8_t UBX_MGA_BDS_EPH = 0x03; //BDS Ephemeris Assistance
const uint8_t UBX_MGA_BDS_ALM = 0x03; //BDS Almanac Assistance
const uint8_t UBX_MGA_BDS_HEALTH = 0x03; //BDS Health Assistance
const uint8_t UBX_MGA_BDS_UTC = 0x03; //BDS UTC Assistance
const uint8_t UBX_MGA_BDS_IONO = 0x03; //BDS Ionospheric Assistance
const uint8_t UBX_MGA_DBD = 0x80; //Either: Poll the Navigation Database, or Navigation Database Dump Entry
const uint8_t UBX_MGA_GAL_EPH = 0x02; //Galileo Ephemeris Assistance
const uint8_t UBX_MGA_GAL_ALM = 0x02; //Galileo Almanac Assitance
const uint8_t UBX_MGA_GAL_TIMOFFSET = 0x02; //Galileo GPS time offset assistance
const uint8_t UBX_MGA_GAL_UTC = 0x02; //Galileo UTC Assistance
const uint8_t UBX_MGA_GLO_EPH = 0x06; //GLONASS Ephemeris Assistance
const uint8_t UBX_MGA_GLO_ALM = 0x06; //GLONASS Almanac Assistance
const uint8_t UBX_MGA_GLO_TIMEOFFSET = 0x06; //GLONASS Auxiliary Time Offset Assistance
const uint8_t UBX_MGA_GPS_EPH = 0x00; //GPS Ephemeris Assistance
const uint8_t UBX_MGA_GPS_ALM = 0x00; //GPS Almanac Assistance
const uint8_t UBX_MGA_GPS_HEALTH = 0x00; //GPS Health Assistance
const uint8_t UBX_MGA_GPS_UTC = 0x00; //GPS UTC Assistance
const uint8_t UBX_MGA_GPS_IONO = 0x00; //GPS Ionosphere Assistance
const uint8_t UBX_MGA_INI_POS_XYZ = 0x40; //Initial Position Assistance
const uint8_t UBX_MGA_INI_POS_LLH = 0x40; //Initial Position Assitance
const uint8_t UBX_MGA_INI_TIME_UTC = 0x40; //Initial Time Assistance
const uint8_t UBX_MGA_INI_TIME_GNSS = 0x40; //Initial Time Assistance
const uint8_t UBX_MGA_INI_CLKD = 0x40; //Initial Clock Drift Assitance
const uint8_t UBX_MGA_INI_FREQ = 0x40; //Initial Frequency Assistance
const uint8_t UBX_MGA_INI_EOP = 0x40; //Earth Orientation Parameters Assistance
const uint8_t UBX_MGA_QZSS_EPH = 0x05; //QZSS Ephemeris Assistance
const uint8_t UBX_MGA_QZSS_ALM = 0x05; //QZSS Almanac Assistance
const uint8_t UBX_MGA_QZAA_HEALTH = 0x05; //QZSS Health Assistance
//The following are used to configure the MON UBX messages (monitoring messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 35)
const uint8_t UBX_MON_COMMS = 0x36; //Comm port information
const uint8_t UBX_MON_GNSS = 0x28; //Information message major GNSS selection
const uint8_t UBX_MON_HW2 = 0x0B; //Extended Hardware Status
const uint8_t UBX_MON_HW3 = 0x37; //HW I/O pin information
const uint8_t UBX_MON_HW = 0x09; //Hardware Status
const uint8_t UBX_MON_IO = 0x02; //I/O Subsystem Status
const uint8_t UBX_MON_MSGPP = 0x06; //Message Parse and Process Status
const uint8_t UBX_MON_PATCH = 0x27; //Output information about installed patches
const uint8_t UBX_MON_RF = 0x38; //RF information
const uint8_t UBX_MON_RXBUF = 0x07; //Receiver Buffer Status
const uint8_t UBX_MON_RXR = 0x21; //Receiver Status Information
const uint8_t UBX_MON_TXBUF = 0x08; //Transmitter Buffer Status. Used for query tx buffer size/state.
const uint8_t UBX_MON_VER = 0x04; //Receiver/Software Version. Used for obtaining Protocol Version.
//The following are used to configure the NAV UBX messages (navigation results messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 35-36)
const uint8_t UBX_NAV_ATT = 0x05; //Vehicle "Attitude" Solution
const uint8_t UBX_NAV_CLOCK = 0x22; //Clock Solution
const uint8_t UBX_NAV_DOP = 0x04; //Dilution of precision
const uint8_t UBX_NAV_EOE = 0x61; //End of Epoch
const uint8_t UBX_NAV_GEOFENCE = 0x39; //Geofencing status. Used to poll the geofence status
const uint8_t UBX_NAV_HPPOSECEF = 0x13; //High Precision Position Solution in ECEF. Used to find our positional accuracy (high precision).
const uint8_t UBX_NAV_HPPOSLLH = 0x14; //High Precision Geodetic Position Solution. Used for obtaining lat/long/alt in high precision
const uint8_t UBX_NAV_ODO = 0x09; //Odometer Solution
const uint8_t UBX_NAV_ORB = 0x34; //GNSS Orbit Database Info
const uint8_t UBX_NAV_POSECEF = 0x01; //Position Solution in ECEF
const uint8_t UBX_NAV_POSLLH = 0x02; //Geodetic Position Solution
const uint8_t UBX_NAV_PVT = 0x07; //All the things! Position, velocity, time, PDOP, height, h/v accuracies, number of satellites. Navigation Position Velocity Time Solution.
const uint8_t UBX_NAV_RELPOSNED = 0x3C; //Relative Positioning Information in NED frame
const uint8_t UBX_NAV_RESETODO = 0x10; //Reset odometer
const uint8_t UBX_NAV_SAT = 0x35; //Satellite Information
const uint8_t UBX_NAV_SIG = 0x43; //Signal Information
const uint8_t UBX_NAV_STATUS = 0x03; //Receiver Navigation Status
const uint8_t UBX_NAV_SVIN = 0x3B; //Survey-in data. Used for checking Survey In status
const uint8_t UBX_NAV_TIMEBDS = 0x24; //BDS Time Solution
const uint8_t UBX_NAV_TIMEGAL = 0x25; //Galileo Time Solution
const uint8_t UBX_NAV_TIMEGLO = 0x23; //GLO Time Solution
const uint8_t UBX_NAV_TIMEGPS = 0x20; //GPS Time Solution
const uint8_t UBX_NAV_TIMELS = 0x26; //Leap second event information
const uint8_t UBX_NAV_TIMEUTC = 0x21; //UTC Time Solution
const uint8_t UBX_NAV_VELECEF = 0x11; //Velocity Solution in ECEF
const uint8_t UBX_NAV_VELNED = 0x12; //Velocity Solution in NED
//The following are used to configure the RXM UBX messages (receiver manager messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 36)
const uint8_t UBX_RXM_MEASX = 0x14; //Satellite Measurements for RRLP
const uint8_t UBX_RXM_PMREQ = 0x41; //Requests a Power Management task (two differenent packet sizes)
const uint8_t UBX_RXM_RAWX = 0x15; //Multi-GNSS Raw Measurement Data
const uint8_t UBX_RXM_RLM = 0x59; //Galileo SAR Short-RLM report (two different packet sizes)
const uint8_t UBX_RXM_RTCM = 0x32; //RTCM input status
const uint8_t UBX_RXM_SFRBX = 0x13; //Boradcast Navigation Data Subframe
//The following are used to configure the SEC UBX messages (security feature messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 36)
const uint8_t UBX_SEC_UNIQID = 0x03; //Unique chip ID
//The following are used to configure the TIM UBX messages (timing messages). Descriptions from UBX messages overview (ZED_F9P Interface Description Document page 36)
const uint8_t UBX_TIM_TM2 = 0x03; //Time mark data
const uint8_t UBX_TIM_TP = 0x01; //Time Pulse Timedata
const uint8_t UBX_TIM_VRFY = 0x06; //Sourced Time Verification
//The following are used to configure the UPD UBX messages (firmware update messages). Descriptions from UBX messages overview (ZED-F9P Interface Description Document page 36)
const uint8_t UBX_UPD_SOS = 0x14; //Poll Backup Fil Restore Status, Create Backup File in Flash, Clear Backup File in Flash, Backup File Creation Acknowledge, System Restored from Backup
//The following are used to enable RTCM messages
const uint8_t UBX_RTCM_MSB = 0xF5; //All RTCM enable commands have 0xF5 as MSB
const uint8_t UBX_RTCM_1005 = 0x05; //Stationary RTK reference ARP
const uint8_t UBX_RTCM_1074 = 0x4A; //GPS MSM4
const uint8_t UBX_RTCM_1077 = 0x4D; //GPS MSM7
const uint8_t UBX_RTCM_1084 = 0x54; //GLONASS MSM4
const uint8_t UBX_RTCM_1087 = 0x57; //GLONASS MSM7
const uint8_t UBX_RTCM_1094 = 0x5E; //Galileo MSM4
const uint8_t UBX_RTCM_1097 = 0x61; //Galileo MSM7
const uint8_t UBX_RTCM_1124 = 0x7C; //BeiDou MSM4
const uint8_t UBX_RTCM_1127 = 0x7F; //BeiDou MSM7
const uint8_t UBX_RTCM_1230 = 0xE6; //GLONASS code-phase biases, set to once every 10 seconds
const uint8_t UBX_RTCM_4072_0 = 0xFE; //Reference station PVT (ublox proprietary RTCM message)
const uint8_t UBX_RTCM_4072_1 = 0xFD; //Additional reference station information (ublox proprietary RTCM message)
const uint8_t UBX_ACK_NACK = 0x00;
const uint8_t UBX_ACK_ACK = 0x01;
const uint8_t UBX_ACK_NONE = 0x02; //Not a real value
// The following constants are used to get External Sensor Measurements and Status
// Information.
const uint8_t UBX_ESF_MEAS = 0x02;
const uint8_t UBX_ESF_RAW = 0x03;
const uint8_t UBX_ESF_STATUS = 0x10;
const uint8_t UBX_ESF_INS = 0x15; //36 bytes
const uint8_t SVIN_MODE_DISABLE = 0x00;
const uint8_t SVIN_MODE_ENABLE = 0x01;
//The following consts are used to configure the various ports and streams for those ports. See -CFG-PRT.
const uint8_t COM_PORT_I2C = 0;
const uint8_t COM_PORT_UART1 = 1;
const uint8_t COM_PORT_UART2 = 2;
const uint8_t COM_PORT_USB = 3;
const uint8_t COM_PORT_SPI = 4;
const uint8_t COM_TYPE_UBX = (1 << 0);
const uint8_t COM_TYPE_NMEA = (1 << 1);
const uint8_t COM_TYPE_RTCM3 = (1 << 5);
//The following consts are used to generate KEY values for the advanced protocol functions of VELGET/SET/DEL
const uint8_t VAL_SIZE_1 = 0x01; //One bit
const uint8_t VAL_SIZE_8 = 0x02; //One byte
const uint8_t VAL_SIZE_16 = 0x03; //Two bytes
const uint8_t VAL_SIZE_32 = 0x04; //Four bytes
const uint8_t VAL_SIZE_64 = 0x05; //Eight bytes
//These are the Bitfield layers definitions for the UBX-CFG-VALSET message (not to be confused with Bitfield deviceMask in UBX-CFG-CFG)
const uint8_t VAL_LAYER_RAM = (1 << 0);
const uint8_t VAL_LAYER_BBR = (1 << 1);
const uint8_t VAL_LAYER_FLASH = (1 << 2);
//Below are various Groups, IDs, and sizes for various settings
//These can be used to call getVal/setVal/delVal
const uint8_t VAL_GROUP_I2COUTPROT = 0x72;
const uint8_t VAL_GROUP_I2COUTPROT_SIZE = VAL_SIZE_1; //All fields in I2C group are currently 1 bit
const uint8_t VAL_ID_I2COUTPROT_UBX = 0x01;
const uint8_t VAL_ID_I2COUTPROT_NMEA = 0x02;
const uint8_t VAL_ID_I2COUTPROT_RTCM3 = 0x03;
const uint8_t VAL_GROUP_I2C = 0x51;
const uint8_t VAL_GROUP_I2C_SIZE = VAL_SIZE_8; //All fields in I2C group are currently 1 byte
const uint8_t VAL_ID_I2C_ADDRESS = 0x01;
// Configuration Sub-Section mask definitions for saveConfigSelective (UBX-CFG-CFG)
const uint32_t VAL_CFG_SUBSEC_IOPORT = 0x00000001; // ioPort - communications port settings (causes IO system reset!)
const uint32_t VAL_CFG_SUBSEC_MSGCONF = 0x00000002; // msgConf - message configuration
const uint32_t VAL_CFG_SUBSEC_INFMSG = 0x00000004; // infMsg - INF message configuration
const uint32_t VAL_CFG_SUBSEC_NAVCONF = 0x00000008; // navConf - navigation configuration
const uint32_t VAL_CFG_SUBSEC_RXMCONF = 0x00000010; // rxmConf - receiver manager configuration
const uint32_t VAL_CFG_SUBSEC_SENCONF = 0x00000100; // senConf - sensor interface configuration (requires protocol 19+)
const uint32_t VAL_CFG_SUBSEC_RINVCONF = 0x00000200; // rinvConf - remove inventory configuration
const uint32_t VAL_CFG_SUBSEC_ANTCONF = 0x00000400; // antConf - antenna configuration
const uint32_t VAL_CFG_SUBSEC_LOGCONF = 0x00000800; // logConf - logging configuration
const uint32_t VAL_CFG_SUBSEC_FTSCONF = 0x00001000; // ftsConf - FTS configuration (FTS products only)
enum dynModel // Possible values for the dynamic platform model, which provide more accuract position output for the situation. Description extracted from ZED-F9P Integration Manual
{
DYN_MODEL_PORTABLE = 0, //Applications with low acceleration, e.g. portable devices. Suitable for most situations.
// 1 is not defined
DYN_MODEL_STATIONARY = 2, //Used in timing applications (antenna must be stationary) or other stationary applications. Velocity restricted to 0 m/s. Zero dynamics assumed.
DYN_MODEL_PEDESTRIAN, //Applications with low acceleration and speed, e.g. how a pedestrian would move. Low acceleration assumed.
DYN_MODEL_AUTOMOTIVE, //Used for applications with equivalent dynamics to those of a passenger car. Low vertical acceleration assumed
DYN_MODEL_SEA, //Recommended for applications at sea, with zero vertical velocity. Zero vertical velocity assumed. Sea level assumed.
DYN_MODEL_AIRBORNE1g, //Airborne <1g acceleration. Used for applications with a higher dynamic range and greater vertical acceleration than a passenger car. No 2D position fixes supported.
DYN_MODEL_AIRBORNE2g, //Airborne <2g acceleration. Recommended for typical airborne environments. No 2D position fixes supported.
DYN_MODEL_AIRBORNE4g, //Airborne <4g acceleration. Only recommended for extremely dynamic environments. No 2D position fixes supported.
DYN_MODEL_WRIST, // Not supported in protocol versions less than 18. Only recommended for wrist worn applications. Receiver will filter out arm motion.
DYN_MODEL_BIKE, // Supported in protocol versions 19.2
};
#ifndef MAX_PAYLOAD_SIZE
#define MAX_PAYLOAD_SIZE 256 //We need ~220 bytes for getProtocolVersion on most ublox modules
//#define MAX_PAYLOAD_SIZE 768 //Worst case: UBX_CFG_VALSET packet with 64 keyIDs each with 64 bit values
#endif
//-=-=-=-=- UBX binary specific variables
typedef struct
{
uint8_t cls;
uint8_t id;
uint16_t len; //Length of the payload. Does not include cls, id, or checksum bytes
uint16_t counter; //Keeps track of number of overall bytes received. Some responses are larger than 255 bytes.
uint16_t startingSpot; //The counter value needed to go past before we begin recording into payload array
uint8_t *payload;
uint8_t checksumA; //Given to us from module. Checked against the rolling calculated A/B checksums.
uint8_t checksumB;
sfe_ublox_packet_validity_e valid; //Goes from NOT_DEFINED to VALID or NOT_VALID when checksum is checked
sfe_ublox_packet_validity_e classAndIDmatch; // Goes from NOT_DEFINED to VALID or NOT_VALID when the Class and ID match the requestedClass and requestedID
} ubxPacket;
// Struct to hold the results returned by getGeofenceState (returned by UBX-NAV-GEOFENCE)
typedef struct
{
uint8_t status; // Geofencing status: 0 - Geofencing not available or not reliable; 1 - Geofencing active
uint8_t numFences; // Number of geofences
uint8_t combState; // Combined (logical OR) state of all geofences: 0 - Unknown; 1 - Inside; 2 - Outside
uint8_t states[4]; // Geofence states: 0 - Unknown; 1 - Inside; 2 - Outside
} geofenceState;
// Struct to hold the current geofence parameters
typedef struct
{
uint8_t numFences; // Number of active geofences
int32_t lats[4]; // Latitudes of geofences (in degrees * 10^-7)
int32_t longs[4]; // Longitudes of geofences (in degrees * 10^-7)
uint32_t rads[4]; // Radii of geofences (in m * 10^-2)
} geofenceParams;
class SFE_UBLOX_GPS
{
public:
SFE_UBLOX_GPS(void);
// A default of 250ms for maxWait seems fine for I2C but is not enough for SerialUSB.
// If you know you are only going to be using I2C / Qwiic communication, you can
// safely reduce defaultMaxWait to 250.
#ifndef defaultMaxWait // Let's allow the user to define their own value if they want to
#define defaultMaxWait 1100
#endif
//By default use the default I2C address, and use Wire port
boolean begin(TwoWire &wirePort = Wire, uint8_t deviceAddress = 0x42); //Returns true if module is detected
//serialPort needs to be perviously initialized to correct baud rate
boolean begin(Stream &serialPort); //Returns true if module is detected
//Returns true if device answers on _gpsI2Caddress address or via Serial
//maxWait is only used for Serial
boolean isConnected(uint16_t maxWait = 1100);
//Changed in V1.8.1: provides backward compatibility for the examples that call checkUblox directly
//Will default to using packetCfg to look for explicit autoPVT packets so they get processed correctly by processUBX
boolean checkUblox(uint8_t requestedClass = UBX_CLASS_NAV, uint8_t requestedID = UBX_NAV_PVT); //Checks module with user selected commType
boolean checkUbloxI2C(ubxPacket *incomingUBX, uint8_t requestedClass, uint8_t requestedID); //Method for I2C polling of data, passing any new bytes to process()
boolean checkUbloxSerial(ubxPacket *incomingUBX, uint8_t requestedClass, uint8_t requestedID); //Method for serial polling of data, passing any new bytes to process()
void process(uint8_t incoming, ubxPacket *incomingUBX, uint8_t requestedClass, uint8_t requestedID); //Processes NMEA and UBX binary sentences one byte at a time
void processUBX(uint8_t incoming, ubxPacket *incomingUBX, uint8_t requestedClass, uint8_t requestedID); //Given a character, file it away into the uxb packet structure
void processRTCMframe(uint8_t incoming); //Monitor the incoming bytes for start and length bytes
void processRTCM(uint8_t incoming) __attribute__((weak)); //Given rtcm byte, do something with it. User can overwrite if desired to pipe bytes to radio, internet, etc.
void processUBXpacket(ubxPacket *msg); //Once a packet has been received and validated, identify this packet's class/id and update internal flags
void processNMEA(char incoming) __attribute__((weak)); //Given a NMEA character, do something with it. User can overwrite if desired to use something like tinyGPS or MicroNMEA libraries
void calcChecksum(ubxPacket *msg); //Sets the checksumA and checksumB of a given messages
sfe_ublox_status_e sendCommand(ubxPacket *outgoingUBX, uint16_t maxWait = defaultMaxWait); //Given a packet and payload, send everything including CRC bytes, return true if we got a response
sfe_ublox_status_e sendI2cCommand(ubxPacket *outgoingUBX, uint16_t maxWait = 250);
void sendSerialCommand(ubxPacket *outgoingUBX);
void printPacket(ubxPacket *packet); //Useful for debugging
void factoryReset(); //Send factory reset sequence (i.e. load "default" configuration and perform hardReset)
void hardReset(); //Perform a reset leading to a cold start (zero info start-up)
boolean setI2CAddress(uint8_t deviceAddress, uint16_t maxTime = 250); //Changes the I2C address of the Ublox module
void setSerialRate(uint32_t baudrate, uint8_t uartPort = COM_PORT_UART1, uint16_t maxTime = defaultMaxWait); //Changes the serial baud rate of the Ublox module, uartPort should be COM_PORT_UART1/2
void setNMEAOutputPort(Stream &nmeaOutputPort); //Sets the internal variable for the port to direct NMEA characters to
boolean setNavigationFrequency(uint8_t navFreq, uint16_t maxWait = defaultMaxWait); //Set the number of nav solutions sent per second
uint8_t getNavigationFrequency(uint16_t maxWait = defaultMaxWait); //Get the number of nav solutions sent per second currently being output by module
boolean saveConfiguration(uint16_t maxWait = defaultMaxWait); //Save current configuration to flash and BBR (battery backed RAM)
boolean factoryDefault(uint16_t maxWait = defaultMaxWait); //Reset module to factory defaults
boolean saveConfigSelective(uint32_t configMask, uint16_t maxWait = defaultMaxWait); //Save the selected configuration sub-sections to flash and BBR (battery backed RAM)
sfe_ublox_status_e waitForACKResponse(ubxPacket *outgoingUBX, uint8_t requestedClass, uint8_t requestedID, uint16_t maxTime = defaultMaxWait); //Poll the module until a config packet and an ACK is received
sfe_ublox_status_e waitForNoACKResponse(ubxPacket *outgoingUBX, uint8_t requestedClass, uint8_t requestedID, uint16_t maxTime = defaultMaxWait); //Poll the module until a config packet is received
// getPVT will only return data once in each navigation cycle. By default, that is once per second.
// Therefore we should set getPVTmaxWait to slightly longer than that.
// If you change the navigation frequency to (e.g.) 4Hz using setNavigationFrequency(4)
// then you should use a shorter maxWait for getPVT. 300msec would be about right: getPVT(300)
// The same is true for getHPPOSLLH.
#define getPVTmaxWait 1100 // Default maxWait for getPVT and all functions which call it
#define getHPPOSLLHmaxWait 1100 // Default maxWait for getHPPOSLLH and all functions which call it
boolean assumeAutoPVT(boolean enabled, boolean implicitUpdate = true); //In case no config access to the GPS is possible and PVT is send cyclically already
boolean setAutoPVT(boolean enabled, uint16_t maxWait = defaultMaxWait); //Enable/disable automatic PVT reports at the navigation frequency
boolean getPVT(uint16_t maxWait = getPVTmaxWait); //Query module for latest group of datums and load global vars: lat, long, alt, speed, SIV, accuracies, etc. If autoPVT is disabled, performs an explicit poll and waits, if enabled does not block. Returns true if new PVT is available.
boolean getTimeData(uint16_t maxWait = getPVTmaxWait); //Query module for latest time data. Calls getPVT or getTIMEUTC depending on which module is attached.
boolean getPositionData(uint16_t maxWait = getPVTmaxWait); //Query module for latest position data. Calls getPVT or getPOSLLH depending on which module is attached.
boolean getTIMEUTC(uint16_t maxWait = getPVTmaxWait); //Query module for current time (for use with older chip series). Returns true if new data is available.
boolean getPOSLLH(uint16_t maxWait = getPVTmaxWait); //Query module for current position (for use with older chip series). Returns true if new data is available.
boolean setAutoPVT(boolean enabled, boolean implicitUpdate, uint16_t maxWait = defaultMaxWait); //Enable/disable automatic PVT reports at the navigation frequency, with implicitUpdate == false accessing stale data will not issue parsing of data in the rxbuffer of your interface, instead you have to call checkUblox when you want to perform an update
boolean getHPPOSLLH(uint16_t maxWait = getHPPOSLLHmaxWait); //Query module for latest group of datums and load global vars: lat, long, alt, speed, SIV, accuracies, etc. If autoPVT is disabled, performs an explicit poll and waits, if enabled does not block. Returns true if new PVT is available.
void flushPVT(); //Mark all the PVT data as read/stale. This is handy to get data alignment after CRC failure
int32_t getLatitude(uint16_t maxWait = getPVTmaxWait); //Returns the current latitude in degrees * 10^-7. Auto selects between HighPrecision and Regular depending on ability of module.
int32_t getLongitude(uint16_t maxWait = getPVTmaxWait); //Returns the current longitude in degrees * 10-7. Auto selects between HighPrecision and Regular depending on ability of module.
int32_t getAltitude(uint16_t maxWait = getPVTmaxWait); //Returns the current altitude in mm above ellipsoid
int32_t getAltitudeMSL(uint16_t maxWait = getPVTmaxWait); //Returns the current altitude in mm above mean sea level
uint8_t getSIV(uint16_t maxWait = getPVTmaxWait); //Returns number of sats used in fix
uint8_t getFixType(uint16_t maxWait = getPVTmaxWait); //Returns the type of fix: 0=no, 3=3D, 4=GNSS+Deadreckoning
uint8_t getCarrierSolutionType(uint16_t maxWait = getPVTmaxWait); //Returns RTK solution: 0=no, 1=float solution, 2=fixed solution
int32_t getGroundSpeed(uint16_t maxWait = getPVTmaxWait); //Returns speed in mm/s
int32_t getHeading(uint16_t maxWait = getPVTmaxWait); //Returns heading in degrees * 10^-7
uint16_t getPDOP(uint16_t maxWait = getPVTmaxWait); //Returns positional dillution of precision * 10^-2 (dimensionless)
uint16_t getYear(uint16_t maxWait = getPVTmaxWait);
uint8_t getMonth(uint16_t maxWait = getPVTmaxWait);
uint8_t getDay(uint16_t maxWait = getPVTmaxWait);
uint8_t getHour(uint16_t maxWait = getPVTmaxWait);
uint8_t getMinute(uint16_t maxWait = getPVTmaxWait);
uint8_t getSecond(uint16_t maxWait = getPVTmaxWait);
uint16_t getMillisecond(uint16_t maxWait = getPVTmaxWait);
int32_t getNanosecond(uint16_t maxWait = getPVTmaxWait);
uint32_t getTimeOfWeek(uint16_t maxWait = getPVTmaxWait);
int32_t getHighResLatitude(uint16_t maxWait = getHPPOSLLHmaxWait);
int8_t getHighResLatitudeHp(uint16_t maxWait = getHPPOSLLHmaxWait);
int32_t getHighResLongitude(uint16_t maxWait = getHPPOSLLHmaxWait);
int8_t getHighResLongitudeHp(uint16_t maxWait = getHPPOSLLHmaxWait);
int32_t getElipsoid(uint16_t maxWait = getHPPOSLLHmaxWait);
int8_t getElipsoidHp(uint16_t maxWait = getHPPOSLLHmaxWait);
int32_t getMeanSeaLevel(uint16_t maxWait = getHPPOSLLHmaxWait);
int8_t getMeanSeaLevelHp(uint16_t maxWait = getHPPOSLLHmaxWait);
int32_t getGeoidSeparation(uint16_t maxWait = getHPPOSLLHmaxWait);
uint32_t getHorizontalAccuracy(uint16_t maxWait = getHPPOSLLHmaxWait);
uint32_t getVerticalAccuracy(uint16_t maxWait = getHPPOSLLHmaxWait);
//Port configurations
boolean setPortOutput(uint8_t portID, uint8_t comSettings, uint16_t maxWait = defaultMaxWait); //Configure a given port to output UBX, NMEA, RTCM3 or a combination thereof
boolean setPortInput(uint8_t portID, uint8_t comSettings, uint16_t maxWait = defaultMaxWait); //Configure a given port to input UBX, NMEA, RTCM3 or a combination thereof
boolean getPortSettings(uint8_t portID, uint16_t maxWait = defaultMaxWait); //Returns the current protocol bits in the UBX-CFG-PRT command for a given port
boolean setI2COutput(uint8_t comSettings, uint16_t maxWait = 250); //Configure I2C port to output UBX, NMEA, RTCM3 or a combination thereof
boolean setUART1Output(uint8_t comSettings, uint16_t maxWait = defaultMaxWait); //Configure UART1 port to output UBX, NMEA, RTCM3 or a combination thereof
boolean setUART2Output(uint8_t comSettings, uint16_t maxWait = defaultMaxWait); //Configure UART2 port to output UBX, NMEA, RTCM3 or a combination thereof
boolean setUSBOutput(uint8_t comSettings, uint16_t maxWait = 250); //Configure USB port to output UBX, NMEA, RTCM3 or a combination thereof
boolean setSPIOutput(uint8_t comSettings, uint16_t maxWait = 250); //Configure SPI port to output UBX, NMEA, RTCM3 or a combination thereof
//Functions to turn on/off message types for a given port ID (see COM_PORT_I2C, etc above)
boolean configureMessage(uint8_t msgClass, uint8_t msgID, uint8_t portID, uint8_t sendRate, uint16_t maxWait = defaultMaxWait);
boolean enableMessage(uint8_t msgClass, uint8_t msgID, uint8_t portID, uint8_t sendRate = 1, uint16_t maxWait = defaultMaxWait);
boolean disableMessage(uint8_t msgClass, uint8_t msgID, uint8_t portID, uint16_t maxWait = defaultMaxWait);
boolean enableNMEAMessage(uint8_t msgID, uint8_t portID, uint8_t sendRate = 1, uint16_t maxWait = defaultMaxWait);
boolean disableNMEAMessage(uint8_t msgID, uint8_t portID, uint16_t maxWait = defaultMaxWait);
boolean enableRTCMmessage(uint8_t messageNumber, uint8_t portID, uint8_t sendRate, uint16_t maxWait = defaultMaxWait); //Given a message number turns on a message ID for output over given PortID
boolean disableRTCMmessage(uint8_t messageNumber, uint8_t portID, uint16_t maxWait = defaultMaxWait); //Turn off given RTCM message from a given port
//General configuration (used only on protocol v27 and higher - ie, ZED-F9P)
//It is probably safe to assume that users of the ZED-F9P will be using I2C / Qwiic.
//If they are using Serial then the higher baud rate will also help. So let's leave maxWait set to 250ms.
uint8_t getVal8(uint16_t group, uint16_t id, uint8_t size, uint8_t layer = VAL_LAYER_BBR, uint16_t maxWait = 250); //Returns the value at a given group/id/size location
uint8_t getVal8(uint32_t keyID, uint8_t layer = VAL_LAYER_BBR, uint16_t maxWait = 250); //Returns the value at a given group/id/size location
uint8_t setVal(uint32_t keyID, uint16_t value, uint8_t layer = VAL_LAYER_BBR, uint16_t maxWait = 250); //Sets the 16-bit value at a given group/id/size location
uint8_t setVal8(uint32_t keyID, uint8_t value, uint8_t layer = VAL_LAYER_BBR, uint16_t maxWait = 250); //Sets the 8-bit value at a given group/id/size location
uint8_t setVal16(uint32_t keyID, uint16_t value, uint8_t layer = VAL_LAYER_BBR, uint16_t maxWait = 250); //Sets the 16-bit value at a given group/id/size location
uint8_t setVal32(uint32_t keyID, uint32_t value, uint8_t layer = VAL_LAYER_BBR, uint16_t maxWait = 250); //Sets the 32-bit value at a given group/id/size location
uint8_t newCfgValset8(uint32_t keyID, uint8_t value, uint8_t layer = VAL_LAYER_BBR); //Define a new UBX-CFG-VALSET with the given KeyID and 8-bit value
uint8_t newCfgValset16(uint32_t keyID, uint16_t value, uint8_t layer = VAL_LAYER_BBR); //Define a new UBX-CFG-VALSET with the given KeyID and 16-bit value
uint8_t newCfgValset32(uint32_t keyID, uint32_t value, uint8_t layer = VAL_LAYER_BBR); //Define a new UBX-CFG-VALSET with the given KeyID and 32-bit value
uint8_t addCfgValset8(uint32_t keyID, uint8_t value); //Add a new KeyID and 8-bit value to an existing UBX-CFG-VALSET ubxPacket
uint8_t addCfgValset16(uint32_t keyID, uint16_t value); //Add a new KeyID and 16-bit value to an existing UBX-CFG-VALSET ubxPacket
uint8_t addCfgValset32(uint32_t keyID, uint32_t value); //Add a new KeyID and 32-bit value to an existing UBX-CFG-VALSET ubxPacket
uint8_t sendCfgValset8(uint32_t keyID, uint8_t value, uint16_t maxWait = 250); //Add the final KeyID and 8-bit value to an existing UBX-CFG-VALSET ubxPacket and send it
uint8_t sendCfgValset16(uint32_t keyID, uint16_t value, uint16_t maxWait = 250); //Add the final KeyID and 16-bit value to an existing UBX-CFG-VALSET ubxPacket and send it
uint8_t sendCfgValset32(uint32_t keyID, uint32_t value, uint16_t maxWait = 250); //Add the final KeyID and 32-bit value to an existing UBX-CFG-VALSET ubxPacket and send it
//Functions used for RTK and base station setup
//It is probably safe to assume that users of the RTK will be using I2C / Qwiic. So let's leave maxWait set to 250ms.
boolean getSurveyMode(uint16_t maxWait = 250); //Get the current TimeMode3 settings
boolean setSurveyMode(uint8_t mode, uint16_t observationTime, float requiredAccuracy, uint16_t maxWait = 250); //Control survey in mode
boolean enableSurveyMode(uint16_t observationTime, float requiredAccuracy, uint16_t maxWait = 250); //Begin Survey-In for NEO-M8P
boolean disableSurveyMode(uint16_t maxWait = 250); //Stop Survey-In mode
boolean getSurveyStatus(uint16_t maxWait); //Reads survey in status and sets the global variables
uint32_t getPositionAccuracy(uint16_t maxWait = 1100); //Returns the 3D accuracy of the current high-precision fix, in mm. Supported on NEO-M8P, ZED-F9P,
uint8_t getProtocolVersionHigh(uint16_t maxWait = 500); //Returns the PROTVER XX.00 from UBX-MON-VER register
uint8_t getProtocolVersionLow(uint16_t maxWait = 500); //Returns the PROTVER 00.XX from UBX-MON-VER register
boolean getProtocolVersion(uint16_t maxWait = 500); //Queries module, loads low/high bytes
boolean getRELPOSNED(uint16_t maxWait = 1100); //Get Relative Positioning Information of the NED frame
void enableDebugging(Stream &debugPort = Serial, boolean printLimitedDebug = false); //Given a port to print to, enable debug messages. Default to all, not limited.
void disableDebugging(void); //Turn off debug statements
void debugPrint(char *message); //Safely print debug statements
void debugPrintln(char *message); //Safely print debug statements
const char *statusString(sfe_ublox_status_e stat); //Pretty print the return value
//Support for geofences
boolean addGeofence(int32_t latitude, int32_t longitude, uint32_t radius, byte confidence = 0, byte pinPolarity = 0, byte pin = 0, uint16_t maxWait = 1100); // Add a new geofence
boolean clearGeofences(uint16_t maxWait = 1100); //Clears all geofences
boolean getGeofenceState(geofenceState &currentGeofenceState, uint16_t maxWait = 1100); //Returns the combined geofence state
boolean clearAntPIO(uint16_t maxWait = 1100); //Clears the antenna control pin settings to release the PIOs
geofenceParams currentGeofenceParams; // Global to store the geofence parameters
boolean powerSaveMode(bool power_save = true, uint16_t maxWait = 1100);
uint8_t getPowerSaveMode(uint16_t maxWait = 1100); // Returns 255 if the sendCommand fails
//Change the dynamic platform model using UBX-CFG-NAV5
boolean setDynamicModel(dynModel newDynamicModel = DYN_MODEL_PORTABLE, uint16_t maxWait = 1100);
uint8_t getDynamicModel(uint16_t maxWait = 1100); // Get the dynamic model - returns 255 if the sendCommand fails
boolean getEsfInfo(uint16_t maxWait = 1100);
boolean getEsfIns(uint16_t maxWait = 1100);
boolean getEsfDataInfo(uint16_t maxWait = 1100);
boolean getEsfRawDataInfo(uint16_t maxWait = 1100);
sfe_ublox_status_e getSensState(uint8_t sensor, uint16_t maxWait = 1100);
boolean getVehAtt(uint16_t maxWait = 1100);
//Survey-in specific controls
struct svinStructure
{
boolean active;
boolean valid;
uint16_t observationTime;
float meanAccuracy;
} svin;
//Relative Positioning Info in NED frame specific controls
struct frelPosInfoStructure
{
uint16_t refStationID;
float relPosN;
float relPosE;
float relPosD;
long relPosLength;
long relPosHeading;
int8_t relPosHPN;
int8_t relPosHPE;
int8_t relPosHPD;
int8_t relPosHPLength;
float accN;
float accE;
float accD;
bool gnssFixOk;
bool diffSoln;
bool relPosValid;
uint8_t carrSoln;
bool isMoving;
bool refPosMiss;
bool refObsMiss;
} relPosInfo;
//The major datums we want to globally store
uint16_t gpsYear;
uint8_t gpsMonth;
uint8_t gpsDay;
uint8_t gpsHour;
uint8_t gpsMinute;
uint8_t gpsSecond;
uint16_t gpsMillisecond;
int32_t gpsNanosecond;
int32_t latitude; //Degrees * 10^-7 (more accurate than floats)
int32_t longitude; //Degrees * 10^-7 (more accurate than floats)
int32_t altitude; //Number of mm above ellipsoid
int32_t altitudeMSL; //Number of mm above Mean Sea Level
uint8_t SIV; //Number of satellites used in position solution
uint8_t fixType; //Tells us when we have a solution aka lock
uint8_t carrierSolution; //Tells us when we have an RTK float/fixed solution
int32_t groundSpeed; //mm/s
int32_t headingOfMotion; //degrees * 10^-5
uint16_t pDOP; //Positional dilution of precision * 10^-2 (dimensionless)
uint8_t versionLow; //Loaded from getProtocolVersion().
uint8_t versionHigh;
uint32_t timeOfWeek; // ms
int32_t highResLatitude; // Degrees * 10^-7
int32_t highResLongitude; // Degrees * 10^-7
int32_t elipsoid; // Height above ellipsoid in mm (Typo! Should be eLLipsoid! **Uncorrected for backward-compatibility.**)
int32_t meanSeaLevel; // Height above mean sea level in mm
int32_t geoidSeparation; // This seems to only be provided in NMEA GGA and GNS messages
uint32_t horizontalAccuracy; // mm * 10^-1 (i.e. 0.1mm)
uint32_t verticalAccuracy; // mm * 10^-1 (i.e. 0.1mm)
int8_t elipsoidHp; // High precision component of the height above ellipsoid in mm * 10^-1 (Deliberate typo! Should be eLLipsoidHp!)
int8_t meanSeaLevelHp; // High precision component of Height above mean sea level in mm * 10^-1
int8_t highResLatitudeHp; // High precision component of latitude: Degrees * 10^-9
int8_t highResLongitudeHp; // High precision component of longitude: Degrees * 10^-9
uint16_t rtcmFrameCounter = 0; //Tracks the type of incoming byte inside RTCM frame
#define DEF_NUM_SENS 7
struct deadReckData
{
uint8_t version;
uint8_t fusionMode;
uint8_t xAngRateVald;
uint8_t yAngRateVald;
uint8_t zAngRateVald;
uint8_t xAccelVald;
uint8_t yAccelVald;
uint8_t zAccelVald;
int32_t xAngRate;
int32_t yAngRate;
int32_t zAngRate;
int32_t xAccel;
int32_t yAccel;
int32_t zAccel;
// The array size is based on testing directly on M8U and F9R
uint32_t rawData;
uint32_t rawDataType;
uint32_t rawTStamp;
uint32_t data[DEF_NUM_SENS];
uint32_t dataType[DEF_NUM_SENS];
uint32_t dataTStamp[DEF_NUM_SENS];
} imuMeas;
struct indivImuData
{
uint8_t numSens;
uint8_t senType;
boolean isUsed;
boolean isReady;
uint8_t calibStatus;
uint8_t timeStatus;
uint8_t freq; // Hz
boolean badMeas;
boolean badTag;
boolean missMeas;
boolean noisyMeas;
} ubloxSen;
struct vehicleAttitude
{
// All values in degrees
int32_t roll;
int32_t pitch;
int32_t heading;
uint32_t accRoll;
uint32_t accPitch;
uint32_t accHeading;
} vehAtt;
private:
//Depending on the sentence type the processor will load characters into different arrays
enum SentenceTypes
{
NONE = 0,
NMEA,
UBX,
RTCM
} currentSentence = NONE;
//Depending on the ubx binary response class, store binary responses into different places
enum classTypes
{
CLASS_NONE = 0,
CLASS_ACK,
CLASS_NOT_AN_ACK
} ubxFrameClass = CLASS_NONE;
enum commTypes
{
COMM_TYPE_I2C = 0,
COMM_TYPE_SERIAL,
COMM_TYPE_SPI
} commType = COMM_TYPE_I2C; //Controls which port we look to for incoming bytes
//Functions
boolean checkUbloxInternal(ubxPacket *incomingUBX, uint8_t requestedClass = 255, uint8_t requestedID = 255); //Checks module with user selected commType
uint32_t extractLong(uint8_t spotToStart); //Combine four bytes from payload into long
uint16_t extractInt(uint8_t spotToStart); //Combine two bytes from payload into int
uint8_t extractByte(uint8_t spotToStart); //Get byte from payload
int8_t extractSignedChar(uint8_t spotToStart); //Get signed 8-bit value from payload
void addToChecksum(uint8_t incoming); //Given an incoming byte, adjust rollingChecksumA/B
//Variables
TwoWire *_i2cPort; //The generic connection to user's chosen I2C hardware
Stream *_serialPort; //The generic connection to user's chosen Serial hardware
Stream *_nmeaOutputPort = NULL; //The user can assign an output port to print NMEA sentences if they wish
Stream *_debugSerial; //The stream to send debug messages to if enabled
uint8_t _gpsI2Caddress = 0x42; //Default 7-bit unshifted address of the ublox 6/7/8/M8/F9 series
//This can be changed using the ublox configuration software
boolean _printDebug = false; //Flag to print the serial commands we are sending to the Serial port for debug
boolean _printLimitedDebug = false; //Flag to print limited debug messages. Useful for I2C debugging or high navigation rates
//The packet buffers
//These are pointed at from within the ubxPacket
uint8_t payloadAck[2]; // Holds the requested ACK/NACK
uint8_t payloadCfg[MAX_PAYLOAD_SIZE]; // Holds the requested data packet
uint8_t payloadBuf[2]; // Temporary buffer used to screen incoming packets or dump unrequested packets
//Init the packet structures and init them with pointers to the payloadAck, payloadCfg and payloadBuf arrays
ubxPacket packetAck = {0, 0, 0, 0, 0, payloadAck, 0, 0, SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED, SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED};
ubxPacket packetCfg = {0, 0, 0, 0, 0, payloadCfg, 0, 0, SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED, SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED};
ubxPacket packetBuf = {0, 0, 0, 0, 0, payloadBuf, 0, 0, SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED, SFE_UBLOX_PACKET_VALIDITY_NOT_DEFINED};
//Flag if this packet is unrequested (and so should be ignored and not copied into packetCfg or packetAck)
boolean ignoreThisPayload = false;
//Identify which buffer is in use
//Data is stored in packetBuf until the requested class and ID can be validated
//If a match is seen, data is diverted into packetAck or packetCfg
sfe_ublox_packet_buffer_e activePacketBuffer = SFE_UBLOX_PACKET_PACKETBUF;
//Limit checking of new data to every X ms
//If we are expecting an update every X Hz then we should check every half that amount of time
//Otherwise we may block ourselves from seeing new data
uint8_t i2cPollingWait = 100; //Default to 100ms. Adjusted when user calls setNavigationFrequency()
unsigned long lastCheck = 0;
boolean autoPVT = false; //Whether autoPVT is enabled or not
boolean autoPVTImplicitUpdate = true; // Whether autoPVT is triggered by accessing stale data (=true) or by a call to checkUblox (=false)
uint16_t ubxFrameCounter; //It counts all UBX frame. [Fixed header(2bytes), CLS(1byte), ID(1byte), length(2bytes), payload(x bytes), checksums(2bytes)]
uint8_t rollingChecksumA; //Rolls forward as we receive incoming bytes. Checked against the last two A/B checksum bytes
uint8_t rollingChecksumB; //Rolls forward as we receive incoming bytes. Checked against the last two A/B checksum bytes
//Create bit field for staleness of each datum in PVT we want to monitor
//moduleQueried.latitude goes true each time we call getPVT()
//This reduces the number of times we have to call getPVT as this can take up to ~1s per read
//depending on update rate
struct
{
uint32_t gpsiTOW : 1;
uint32_t gpsYear : 1;
uint32_t gpsMonth : 1;
uint32_t gpsDay : 1;
uint32_t gpsHour : 1;
uint32_t gpsMinute : 1;
uint32_t gpsSecond : 1;
uint32_t gpsNanosecond : 1;
uint32_t all : 1;
uint32_t longitude : 1;
uint32_t latitude : 1;
uint32_t altitude : 1;
uint32_t altitudeMSL : 1;
uint32_t SIV : 1;
uint32_t fixType : 1;
uint32_t carrierSolution : 1;
uint32_t groundSpeed : 1;
uint32_t headingOfMotion : 1;
uint32_t pDOP : 1;
uint32_t versionNumber : 1;
} moduleQueried;
struct
{
uint16_t all : 1;
uint16_t timeOfWeek : 1;
uint16_t highResLatitude : 1;
uint16_t highResLongitude : 1;
uint16_t elipsoid : 1;
uint16_t meanSeaLevel : 1;
uint16_t geoidSeparation : 1; // Redundant but kept for backward-compatibility
uint16_t horizontalAccuracy : 1;
uint16_t verticalAccuracy : 1;
uint16_t elipsoidHp : 1;
uint16_t meanSeaLevelHp : 1;
uint16_t highResLatitudeHp : 1;
uint16_t highResLongitudeHp : 1;
} highResModuleQueried;
uint16_t rtcmLen = 0;
};
#endif