solo1/docs/solo/nucleo32-board.md

258 wiersze
7.3 KiB
Markdown

# Nucleo32 board preparation
Additional steps are required to run the firmware on the Nucleo32 board.
## USB-A cable
Board does not provide an USB cable / socket for the target MCU communication.
Own provided USB plug has to be connected in the following way:
| PIN / Arduino PIN | MCU leg | USB wire color | Signal |
| ----------------- | ------- | -------------- | ------ |
| D10 / PA11 | 21 | white | D- |
| D2 / PA12 | 22 | green | D+ |
| GND (near D2) | ------- | black | GND |
| **not connected** | ------- | red | 5V |
Each USB plug pin should be connected via the wire in a color defined by the standard. It might be confirmed with a
multimeter for additional safety. USB plug description:
| PIN | USB wire color | Signal |
| --- | -------------- | ------ |
| 4 | black | GND |
| 3 | green | D+ |
| 2 | white | D- |
| 1 | red | 5V |
See this [USB plug] image, and Wikipedia's [USB plug description].
Plug in [USB-A_schematic.pdf] has wrong wire order, registered as [solo-hw#1].
The power is taken from the debugger / board (unless the board is configured in another way).
Make sure 5V is not connected, and is covered from contacting with the board elements.
Based on [USB-A_schematic.pdf].
## Firmware modification
Following patch has to be applied to skip the user presence confirmation, for tests. Might be applied at a later stage.
```text
diff --git a/targets/stm32l432/src/app.h b/targets/stm32l432/src/app.h
index c14a7ed..c89c3b5 100644
--- a/targets/stm32l432/src/app.h
+++ b/targets/stm32l432/src/app.h
@@ -71,6 +71,6 @@ void hw_init(void);
#define SOLO_BUTTON_PIN LL_GPIO_PIN_0
#define SKIP_BUTTON_CHECK_WITH_DELAY 0
-#define SKIP_BUTTON_CHECK_FAST 0
+#define SKIP_BUTTON_CHECK_FAST 1
#endif
```
It is possible to provide a button and connect it to the MCU pins, as instructed in [USB-A_schematic.pdf]:
```text
PA0 / pin 6 --> button --> GND
```
In that case the mentioned patch would not be required.
## Development environment setup
Environment: Fedora 29 x64, Linux 4.19.9
See <https://docs.solokeys.io/solo/building/> for the original guide. Here details not included there will be covered.
### Install ARM tools Linux
1. Download current [ARM tools] package: [gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2].
2. Extract the archive.
3. Add full path to the `./bin` directory as first entry to the `$PATH` variable,
as in `~/gcc-arm/gcc-arm-none-eabi-8-2018-q4-major/bin/:$PATH`.
### Install ARM tools OsX using brew package manager
```bash
brew tap ArmMbed/homebrew-formulae
brew install arm-none-eabi-gcc
```
### Install flashing software
ST provides a CLI flashing tool - `STM32_Programmer_CLI`. It can be downloaded directly from the vendor's site:
1. Go to [download site URL](https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stm32cubeprog.html), go to bottom page and from STM32CubeProg row select Download button.
2. Unzip contents of the archive.
3. Run \*Linux setup
4. In installation directory go to `./bin` - there the `./STM32_Programmer_CLI` is located
5. Add symlink to the STM32 CLI binary to `.local/bin`. Make sure the latter it is in `$PATH`.
If you're on MacOS X and installed the STM32CubeProg, you need to add the following to your path:
```bash
# ~/.bash_profile
export PATH="/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/":$PATH
```
## Building and flashing
### Building
Please follow <https://docs.solokeys.io/solo/building/>, as the build way changes rapidly.
Currently (8.1.19) to build the firmware, following lines should be executed
```bash
# while in the main project directory
cd targets/stm32l432
make cbor
make build-hacker DEBUG=1
```
Note: `DEBUG=2` stops the device initialization, until a serial client will be attached to its virtual port.
Do not use it, if you do not plan to do so.
### Flashing via the Makefile command
```bash
# while in the main project directory
# create Python virtual environment with required packages, and activate
make venv
. venv/bin/activate
# Run flashing
cd ./targets/stm32l432
make flash
# which runs:
# flash: solo.hex bootloader.hex
# python merge_hex.py solo.hex bootloader.hex all.hex (intelhex library required)
# STM32_Programmer_CLI -c port=SWD -halt -e all --readunprotect
# STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst
```
### Manual flashing
In case you already have a firmware to flash (named `all.hex`), please run the following:
```bash
STM32_Programmer_CLI -c port=SWD -halt -e all --readunprotect
STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst
```
## Testing
### Internal
Project-provided tests.
#### Simulated device
A simulated device is provided to test the HID layer.
##### Build
```bash
make clean
cd tinycbor
make
cd ..
make env2
```
##### Execution
```bash
# run simulated device (will create a network UDP server)
./main
# run test 1
./env2/bin/python tools/ctap_test.py
# run test 2 (or other files in the examples directory)
./env2/bin/python python-fido2/examples/credential.py
```
#### Real device
```bash
# while in the main project directory
# not passing as of 8.1.19, due to test solution issues
make fido2-test
```
### External
#### FIDO2 test sites
1. <https://www.passwordless.dev/overview>
2. <https://webauthn.bin.coffee/>
3. <https://webauthn.org/>
#### U2F test sites
1. <https://u2f.bin.coffee/>
2. <https://demo.yubico.com/u2f>
#### FIDO2 standalone clients
1. <https://github.com/Nitrokey/u2f-ref-code>
2. <https://github.com/Yubico/libfido2>
3. <https://github.com/Yubico/python-fido2>
4. <https://github.com/google/pyu2f>
## USB serial console reading
Device opens an USB-emulated serial port to output its messages. While Nucleo board offers such already,
the Solo device provides its own.
- Provided Python tool
```bash
python3 ../../tools/solotool.py monitor /dev/solokey-serial
```
- External application
```bash
sudo picocom -b 115200 /dev/solokey-serial
```
where `/dev/solokey-serial` is an udev symlink to `/dev/ttyACM1`.
## Other
### Dumping firmware
Size is calculated using bash arithmetic.
```bash
STM32_Programmer_CLI -c port=SWD -halt -u 0x0 $((256*1024)) current.hex
```
### Software reset
```bash
STM32_Programmer_CLI -c port=SWD -rst
```
### Installing required Python packages
Client script requires some Python packages, which could be easily installed locally to the project
via the Makefile command. It is sufficient to run:
```bash
make env3
```
[solo-hw#1]: https://github.com/solokeys/solo-hw/issues/1
[usb plug]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/USB.svg/1200px-USB.svg.png
[usb plug description]: https://en.wikipedia.org/wiki/USB#Receptacle_(socket)_identification
[usb-a_schematic.pdf]: https://github.com/solokeys/solo-hw/releases/download/1.2/USB-A_schematic.pdf
[arm tools]: https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
[gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2]: https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2?revision=d830f9dd-cd4f-406d-8672-cca9210dd220?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2018-q4-major