kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			149 wiersze
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			149 wiersze
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| ROTATION = {0: 0,
 | |
|             BOTTOM: 0,
 | |
|             DOWN: 0,
 | |
|             1: HALF_PI,
 | |
|             LEFT: HALF_PI,
 | |
|             2: PI,
 | |
|             TOP: PI,
 | |
|             UP: PI,
 | |
|             3: PI + HALF_PI,
 | |
|             RIGHT: PI + HALF_PI,
 | |
|             BOTTOM + RIGHT: 0,
 | |
|             DOWN + RIGHT: 0,
 | |
|             DOWN + LEFT: HALF_PI,
 | |
|             BOTTOM + LEFT: HALF_PI,
 | |
|             TOP + LEFT: PI,
 | |
|             UP + LEFT: PI,
 | |
|             TOP + RIGHT: PI + HALF_PI,
 | |
|             UP + RIGHT: PI + HALF_PI,
 | |
|             }
 | |
| 
 | |
| def quarter_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
 | |
| 
 | |
| def half_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], PI)
 | |
| 
 | |
| def circle_arc(x, y, radius, start_ang, sweep_ang):
 | |
|     arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
 | |
| 
 | |
| def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= start_ang + sweep_ang:
 | |
|             sx = x + cos(a) * radius
 | |
|             sy = y + sin(a) * radius
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
 | |
|     sweep_ang = end_ang - start_ang
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= end_ang:
 | |
|             sx = x + cos(a) * d / 2
 | |
|             sy = y + sin(a) * d / 2
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
 | |
|     """
 | |
|     O código para fazer as barras, dois pares (x, y),
 | |
|     um parâmetro de encurtamento: shorter
 | |
|     """
 | |
|     L = dist(x1, y1, x2, y2)
 | |
|     if not thickness:
 | |
|         thickness = 10
 | |
|     with pushMatrix():
 | |
|         translate(x1, y1)
 | |
|         angle = atan2(x1 - x2, y2 - y1)
 | |
|         rotate(angle)
 | |
|         offset = shorter / 2
 | |
|         line(thickness / 2, offset, thickness / 2, L - offset)
 | |
|         line(-thickness / 2, offset, -thickness / 2, L - offset)
 | |
|         if ends[0]:
 | |
|             half_circle(0, offset, thickness / 2, UP)
 | |
|         if ends[1]:
 | |
|             half_circle(0, L - offset, thickness / 2, DOWN)
 | |
| 
 | |
| def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
 | |
|     if r2 is None:
 | |
|         r2 = r1
 | |
|     d = dist(p1x, p1y, p2x, p2y)
 | |
|     if d > 0:
 | |
|         with pushMatrix():
 | |
|             translate(p1x, p1y)
 | |
|             angle = atan2(p1x - p2x, p2y - p1y)
 | |
|             rotate(angle + HALF_PI)
 | |
|             ri = r1 - r2
 | |
|             beta = asin(ri / d) + HALF_PI
 | |
|             x1 = cos(beta) * r1
 | |
|             y1 = sin(beta) * r1
 | |
|             x2 = cos(beta) * r2
 | |
|             y2 = sin(beta) * r2
 | |
|             # with pushStyle():
 | |
|             # noStroke()
 | |
|             # beginShape()
 | |
|             # vertex(-x1, -y1)
 | |
|             # vertex(d - x2, -y2)
 | |
|             # vertex(d, 0)
 | |
|             #      #vertex(d - x2, +y2, 0)
 | |
|             #      #vertex(-x1, +y1, 0)
 | |
|             #      #vertex(0, 0, 0)
 | |
|             # endShape()
 | |
|             line(-x1, -y1, d - x2, -y2)
 | |
|             line(-x1, +y1, d - x2, +y2)
 | |
|             arc(0, 0, r1 * 2, r1 * 2,
 | |
|                 -beta - PI, beta - PI)
 | |
|             arc(d, 0, r2 * 2, r2 * 2,
 | |
|                 beta - PI, PI - beta)
 | |
|     else:
 | |
|         ellipse(p1x, p1y, r1 * 2, r1 * 2)
 | |
|         ellipse(p2y, p2x, r2 * 2, r2 * 2)
 | |
|         
 | |
|         
 | |
| def poly_rounded(P, r0, r1=None, r2=None):
 | |
|     r1 = r0 if not r1 else r1
 | |
|     r2 = r0 if not r2 else r2
 | |
|     a = [0] * 3
 | |
|     d, d1, d2 = 2 * r0, 2 * r1, 2 * r2
 | |
| 
 | |
|     a[0] = atan2(P[1].y - P[0].y, P[1].x - P[0].x) - HALF_PI
 | |
|     a[1] = atan2(P[2].y - P[1].y, P[2].x - P[1].x) - HALF_PI
 | |
|     a[2] = atan2(P[0].y - P[2].y, P[0].x - P[2].x) - HALF_PI
 | |
| 
 | |
|     start = a[2] if a[2] < a[0] else a[2] - TWO_PI
 | |
|     arc(P[0].x, P[0].y, d, d, start, a[0])
 | |
|     start = a[0] if a[0] < a[1] else a[0] - TWO_PI
 | |
|     arc(P[1].x, P[1].y, d1, d1, start, a[1])
 | |
|     start = a[1] if a[1] < a[2] else a[1] - TWO_PI
 | |
|     arc(P[2].x, P[2].y, d2, d2, start, a[2])
 | |
| 
 | |
|     p01 = PVector(P[0].x + r0 * cos(a[0]), P[0].y + r0 * sin(a[0]))
 | |
|     p10 = PVector(P[1].x + r1 * cos(a[0]), P[1].y + r1 * sin(a[0]))
 | |
|     p12 = PVector(P[1].x + r1 * cos(a[1]), P[1].y + r1 * sin(a[1]))
 | |
|     p21 = PVector(P[2].x + r2 * cos(a[1]), P[2].y + r2 * sin(a[1]))
 | |
|     p20 = PVector(P[2].x + r2 * cos(a[2]), P[2].y + r2 * sin(a[2]))
 | |
|     p02 = PVector(P[0].x + r0 * cos(a[2]), P[0].y + r0 * sin(a[2]))
 | |
| 
 | |
|     with pushStyle():
 | |
|         noStroke()
 | |
|         with beginClosedShape():
 | |
|             vertex(P[0].x, P[0].y)
 | |
|             vertex(p02.x, p02.y)
 | |
|             vertex(p20.x, p20.y)
 | |
|             vertex(P[2].x, P[2].y)
 | |
|             vertex(p21.x, p21.y)
 | |
|             vertex(p12.x, p12.y)
 | |
|             vertex(P[1].x, P[1].y)
 | |
|             vertex(p10.x, p10.y)
 | |
|             vertex(p01.x, p01.y)
 | |
| 
 | |
|     line(p01.x, p01.y, p10.x, p10.y)
 | |
|     line(p12.x, p12.y, p21.x, p21.y)
 | |
|     line(p20.x, p20.y, p02.x, p02.y)
 |