kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
				
	
	
		
			230 wiersze
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			230 wiersze
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| ROTATION = {0: 0,
 | |
|             BOTTOM: 0,
 | |
|             DOWN: 0,
 | |
|             1: HALF_PI,
 | |
|             LEFT: HALF_PI,
 | |
|             2: PI,
 | |
|             TOP: PI,
 | |
|             UP: PI,
 | |
|             3: PI + HALF_PI,
 | |
|             RIGHT: PI + HALF_PI,
 | |
|             BOTTOM + RIGHT: 0,
 | |
|             DOWN + RIGHT: 0,
 | |
|             DOWN + LEFT: HALF_PI,
 | |
|             BOTTOM + LEFT: HALF_PI,
 | |
|             TOP + LEFT: PI,
 | |
|             UP + LEFT: PI,
 | |
|             TOP + RIGHT: PI + HALF_PI,
 | |
|             UP + RIGHT: PI + HALF_PI,
 | |
|             }
 | |
| 
 | |
| def quarter_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI)
 | |
| 
 | |
| def half_circle(x, y, radius, quadrant):
 | |
|     circle_arc(x, y, radius, ROTATION[quadrant], PI)
 | |
| 
 | |
| def circle_arc(x, y, radius, start_ang, sweep_ang):
 | |
|     arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang)
 | |
| 
 | |
| def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2):
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= start_ang + sweep_ang:
 | |
|             sx = x + cos(a) * radius
 | |
|             sy = y + sin(a) * radius
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5):
 | |
|     sweep_ang = end_ang - start_ang
 | |
|     angle = sweep_ang / int(num_points)
 | |
|     a = start_ang
 | |
|     with beginShape():
 | |
|         while a <= end_ang:
 | |
|             sx = x + cos(a) * d / 2
 | |
|             sy = y + sin(a) * d / 2
 | |
|             vertex(sx, sy)
 | |
|             a += angle
 | |
| 
 | |
| def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)):
 | |
|     """
 | |
|     O código para fazer as barras, dois pares (x, y),
 | |
|     um parâmetro de encurtamento: shorter
 | |
|     """
 | |
|     L = dist(x1, y1, x2, y2)
 | |
|     if not thickness:
 | |
|         thickness = 10
 | |
|     with pushMatrix():
 | |
|         translate(x1, y1)
 | |
|         angle = atan2(x1 - x2, y2 - y1)
 | |
|         rotate(angle)
 | |
|         offset = shorter / 2
 | |
|         line(thickness / 2, offset, thickness / 2, L - offset)
 | |
|         line(-thickness / 2, offset, -thickness / 2, L - offset)
 | |
|         if ends[0]:
 | |
|             half_circle(0, offset, thickness / 2, UP)
 | |
|         if ends[1]:
 | |
|             half_circle(0, L - offset, thickness / 2, DOWN)
 | |
| 
 | |
| def var_bar(p1x, p1y, p2x, p2y, r1, r2=None):
 | |
|     if r2 is None:
 | |
|         r2 = r1
 | |
|     #line(p1x, p1y, p2x, p2y)
 | |
|     d = dist(p1x, p1y, p2x, p2y)
 | |
|     ri = r1 - r2
 | |
|     if d > abs(ri):
 | |
|         rid = (r1 - r2) / d
 | |
|         if rid > 1:
 | |
|             rid = 1
 | |
|         if rid < -1:
 | |
|             rid = -1
 | |
|         beta = asin(rid) + HALF_PI
 | |
|         with pushMatrix():
 | |
|             translate(p1x, p1y)
 | |
|             angle = atan2(p1x - p2x, p2y - p1y)
 | |
|             rotate(angle + HALF_PI)
 | |
|             x1 = cos(beta) * r1
 | |
|             y1 = sin(beta) * r1
 | |
|             x2 = cos(beta) * r2
 | |
|             y2 = sin(beta) * r2
 | |
|             #print((d, beta, ri, x1, y1, x2, y2))
 | |
|             with pushStyle():
 | |
|                 noStroke()
 | |
|                 beginShape()
 | |
|                 vertex(-x1, -y1)
 | |
|                 vertex(d - x2, -y2)
 | |
|                 vertex(d, 0)
 | |
|                 vertex(d - x2, +y2)
 | |
|                 vertex(-x1, +y1)
 | |
|                 vertex(0, 0)
 | |
|                 endShape(CLOSE)
 | |
|             line(-x1, -y1, d - x2, -y2)
 | |
|             line(-x1, +y1, d - x2, +y2)
 | |
|             arc(0, 0, r1 * 2, r1 * 2,
 | |
|                 -beta - PI, beta - PI)
 | |
|             arc(d, 0, r2 * 2, r2 * 2,
 | |
|                 beta - PI, PI - beta)
 | |
|     else:
 | |
|         ellipse(p1x, p1y, r1 * 2, r1 * 2)
 | |
|         ellipse(p2x, p2y, r2 * 2, r2 * 2)
 | |
| 
 | |
| def poly_rounded2(p_list, r_list, open_poly=False):
 | |
|     """
 | |
|     draws a 'filleted' polygon with variable radius
 | |
|     dependent on roundedCorner()
 | |
|     """
 | |
|     if not open_poly:
 | |
|         with pushStyle():
 | |
|             noStroke()
 | |
|             beginShape()
 | |
|             for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
 | |
|                 m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|                 vertex(m.x, m.y)
 | |
|             endShape(CLOSE)
 | |
|         for p0, p1, p2, r in zip(p_list,
 | |
|                                 [p_list[-1]] + p_list[:-1],
 | |
|                                 [p_list[-2]] + [p_list[-1]] + p_list[:-2],
 | |
|                                 [r_list[-1]] + r_list[:-1]
 | |
|                                 ):
 | |
|             m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|             m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | |
|             roundedCorner(p1, m1, m2, r)
 | |
|     else:
 | |
|             for p0, p1, p2, r in zip(p_list[:-1],
 | |
|                                 [p_list[-1]] + p_list[:-2],
 | |
|                                 [p_list[-2]] + [p_list[-1]] + p_list[:-3],
 | |
|                                 [r_list[-1]] + r_list[:-2]
 | |
|                                 ):
 | |
|                 m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
 | |
|                 m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
 | |
|                 roundedCorner(p1, m1, m2, r)
 | |
|             
 | |
| 
 | |
| def roundedCorner(pc, p1, p2, r):
 | |
|     """
 | |
|     Based on Stackoverflow C# rounded corner post 
 | |
|     https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
 | |
|     """
 | |
|     def GetProportionPoint(pt, segment, L, dx, dy):
 | |
|         factor = float(segment) / L if L != 0 else segment
 | |
|         return PVector((pt.x - dx * factor), (pt.y - dy * factor))
 | |
| 
 | |
|     # Vector 1
 | |
|     dx1 = pc.x - p1.x
 | |
|     dy1 = pc.y - p1.y
 | |
| 
 | |
|     # Vector 2
 | |
|     dx2 = pc.x - p2.x
 | |
|     dy2 = pc.y - p2.y
 | |
| 
 | |
|     # Angle between vector 1 and vector 2 divided by 2
 | |
|     angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
 | |
| 
 | |
|     # The length of segment between angular point and the
 | |
|     # points of intersection with the circle of a given radius
 | |
|     tng = abs(tan(angle))
 | |
|     segment = r / tng if tng != 0 else r
 | |
| 
 | |
|     # Check the segment
 | |
|     length1 = sqrt(dx1 * dx1 + dy1 * dy1)
 | |
|     length2 = sqrt(dx2 * dx2 + dy2 * dy2)
 | |
| 
 | |
|     min_len = min(length1, length2)
 | |
| 
 | |
|     if segment > min_len:
 | |
|         segment = min_len
 | |
|         max_r = min_len * abs(tan(angle))
 | |
|     else:
 | |
|         max_r = r
 | |
| 
 | |
|     # Points of intersection are calculated by the proportion between
 | |
|     # length of vector and the length of the segment.
 | |
|     p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
 | |
|     p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
 | |
| 
 | |
|     # Calculation of the coordinates of the circle
 | |
|     # center by the addition of angular vectors.
 | |
|     dx = pc.x * 2 - p1Cross.x - p2Cross.x
 | |
|     dy = pc.y * 2 - p1Cross.y - p2Cross.y
 | |
| 
 | |
|     L = sqrt(dx * dx + dy * dy)
 | |
|     d = sqrt(segment * segment + max_r * max_r)
 | |
| 
 | |
|     circlePoint = GetProportionPoint(pc, d, L, dx, dy)
 | |
| 
 | |
|     # StartAngle and EndAngle of arc
 | |
|     startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
 | |
|     endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
 | |
| 
 | |
|     # Sweep angle
 | |
|     sweepAngle = endAngle - startAngle
 | |
| 
 | |
|     # Some additional checks
 | |
|     if sweepAngle < 0:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = -sweepAngle
 | |
| 
 | |
|     if sweepAngle > PI:
 | |
|         startAngle, endAngle = endAngle, startAngle
 | |
|         sweepAngle = TWO_PI - sweepAngle
 | |
| 
 | |
|     # Draw result using graphics
 | |
|     # noStroke()
 | |
|     with pushStyle():
 | |
|         noStroke()
 | |
|         beginShape()
 | |
|         vertex(p1.x, p1.y)
 | |
|         vertex(p1Cross.x, p1Cross.y)
 | |
|         vertex(p2Cross.x, p2Cross.y)
 | |
|         vertex(p2.x, p2.y)
 | |
|         endShape(CLOSE)
 | |
| 
 | |
|     line(p1.x, p1.y, p1Cross.x, p1Cross.y)
 | |
|     line(p2.x, p2.y, p2Cross.x, p2Cross.y)
 | |
|     arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
 | |
|         startAngle, startAngle + sweepAngle, OPEN)
 |