kopia lustrzana https://github.com/villares/sketch-a-day
				
				
				
			
		
			
	
	
		
			230 wiersze
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
		
		
			
		
	
	
			230 wiersze
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
|   | # -*- coding: utf-8 -*- | ||
|  | 
 | ||
|  | ROTATION = {0: 0, | ||
|  |             BOTTOM: 0, | ||
|  |             DOWN: 0, | ||
|  |             1: HALF_PI, | ||
|  |             LEFT: HALF_PI, | ||
|  |             2: PI, | ||
|  |             TOP: PI, | ||
|  |             UP: PI, | ||
|  |             3: PI + HALF_PI, | ||
|  |             RIGHT: PI + HALF_PI, | ||
|  |             BOTTOM + RIGHT: 0, | ||
|  |             DOWN + RIGHT: 0, | ||
|  |             DOWN + LEFT: HALF_PI, | ||
|  |             BOTTOM + LEFT: HALF_PI, | ||
|  |             TOP + LEFT: PI, | ||
|  |             UP + LEFT: PI, | ||
|  |             TOP + RIGHT: PI + HALF_PI, | ||
|  |             UP + RIGHT: PI + HALF_PI, | ||
|  |             } | ||
|  | 
 | ||
|  | def quarter_circle(x, y, radius, quadrant): | ||
|  |     circle_arc(x, y, radius, ROTATION[quadrant], HALF_PI) | ||
|  | 
 | ||
|  | def half_circle(x, y, radius, quadrant): | ||
|  |     circle_arc(x, y, radius, ROTATION[quadrant], PI) | ||
|  | 
 | ||
|  | def circle_arc(x, y, radius, start_ang, sweep_ang): | ||
|  |     arc(x, y, radius * 2, radius * 2, start_ang, start_ang + sweep_ang) | ||
|  | 
 | ||
|  | def poly_arc(x, y, radius, start_ang, sweep_ang, num_points=2): | ||
|  |     angle = sweep_ang / int(num_points) | ||
|  |     a = start_ang | ||
|  |     with beginShape(): | ||
|  |         while a <= start_ang + sweep_ang: | ||
|  |             sx = x + cos(a) * radius | ||
|  |             sy = y + sin(a) * radius | ||
|  |             vertex(sx, sy) | ||
|  |             a += angle | ||
|  | 
 | ||
|  | def arc_poly(x, y, d, _, start_ang, end_ang, num_points=5): | ||
|  |     sweep_ang = end_ang - start_ang | ||
|  |     angle = sweep_ang / int(num_points) | ||
|  |     a = start_ang | ||
|  |     with beginShape(): | ||
|  |         while a <= end_ang: | ||
|  |             sx = x + cos(a) * d / 2 | ||
|  |             sy = y + sin(a) * d / 2 | ||
|  |             vertex(sx, sy) | ||
|  |             a += angle | ||
|  | 
 | ||
|  | def bar(x1, y1, x2, y2, thickness=None, shorter=0, ends=(1, 1)): | ||
|  |     """
 | ||
|  |     O código para fazer as barras, dois pares (x, y), | ||
|  |     um parâmetro de encurtamento: shorter | ||
|  |     """
 | ||
|  |     L = dist(x1, y1, x2, y2) | ||
|  |     if not thickness: | ||
|  |         thickness = 10 | ||
|  |     with pushMatrix(): | ||
|  |         translate(x1, y1) | ||
|  |         angle = atan2(x1 - x2, y2 - y1) | ||
|  |         rotate(angle) | ||
|  |         offset = shorter / 2 | ||
|  |         line(thickness / 2, offset, thickness / 2, L - offset) | ||
|  |         line(-thickness / 2, offset, -thickness / 2, L - offset) | ||
|  |         if ends[0]: | ||
|  |             half_circle(0, offset, thickness / 2, UP) | ||
|  |         if ends[1]: | ||
|  |             half_circle(0, L - offset, thickness / 2, DOWN) | ||
|  | 
 | ||
|  | def var_bar(p1x, p1y, p2x, p2y, r1, r2=None): | ||
|  |     if r2 is None: | ||
|  |         r2 = r1 | ||
|  |     #line(p1x, p1y, p2x, p2y) | ||
|  |     d = dist(p1x, p1y, p2x, p2y) | ||
|  |     ri = r1 - r2 | ||
|  |     if d > abs(ri): | ||
|  |         rid = (r1 - r2) / d | ||
|  |         if rid > 1: | ||
|  |             rid = 1 | ||
|  |         if rid < -1: | ||
|  |             rid = -1 | ||
|  |         beta = asin(rid) + HALF_PI | ||
|  |         with pushMatrix(): | ||
|  |             translate(p1x, p1y) | ||
|  |             angle = atan2(p1x - p2x, p2y - p1y) | ||
|  |             rotate(angle + HALF_PI) | ||
|  |             x1 = cos(beta) * r1 | ||
|  |             y1 = sin(beta) * r1 | ||
|  |             x2 = cos(beta) * r2 | ||
|  |             y2 = sin(beta) * r2 | ||
|  |             #print((d, beta, ri, x1, y1, x2, y2)) | ||
|  |             with pushStyle(): | ||
|  |                 noStroke() | ||
|  |                 beginShape() | ||
|  |                 vertex(-x1, -y1) | ||
|  |                 vertex(d - x2, -y2) | ||
|  |                 vertex(d, 0) | ||
|  |                 vertex(d - x2, +y2) | ||
|  |                 vertex(-x1, +y1) | ||
|  |                 vertex(0, 0) | ||
|  |                 endShape(CLOSE) | ||
|  |             line(-x1, -y1, d - x2, -y2) | ||
|  |             line(-x1, +y1, d - x2, +y2) | ||
|  |             arc(0, 0, r1 * 2, r1 * 2, | ||
|  |                 -beta - PI, beta - PI) | ||
|  |             arc(d, 0, r2 * 2, r2 * 2, | ||
|  |                 beta - PI, PI - beta) | ||
|  |     else: | ||
|  |         ellipse(p1x, p1y, r1 * 2, r1 * 2) | ||
|  |         ellipse(p2x, p2y, r2 * 2, r2 * 2) | ||
|  | 
 | ||
|  | def poly_rounded2(p_list, r_list, open_poly=False): | ||
|  |     """
 | ||
|  |     draws a 'filleted' polygon with variable radius | ||
|  |     dependent on roundedCorner() | ||
|  |     """
 | ||
|  |     if not open_poly: | ||
|  |         with pushStyle(): | ||
|  |             noStroke() | ||
|  |             beginShape() | ||
|  |             for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]): | ||
|  |                 m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 | ||
|  |                 vertex(m.x, m.y) | ||
|  |             endShape(CLOSE) | ||
|  |         for p0, p1, p2, r in zip(p_list, | ||
|  |                                 [p_list[-1]] + p_list[:-1], | ||
|  |                                 [p_list[-2]] + [p_list[-1]] + p_list[:-2], | ||
|  |                                 [r_list[-1]] + r_list[:-1] | ||
|  |                                 ): | ||
|  |             m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 | ||
|  |             m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2 | ||
|  |             roundedCorner(p1, m1, m2, r) | ||
|  |     else: | ||
|  |             for p0, p1, p2, r in zip(p_list[:-1], | ||
|  |                                 [p_list[-1]] + p_list[:-2], | ||
|  |                                 [p_list[-2]] + [p_list[-1]] + p_list[:-3], | ||
|  |                                 [r_list[-1]] + r_list[:-2] | ||
|  |                                 ): | ||
|  |                 m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2 | ||
|  |                 m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2 | ||
|  |                 roundedCorner(p1, m1, m2, r) | ||
|  |              | ||
|  | 
 | ||
|  | def roundedCorner(pc, p1, p2, r): | ||
|  |     """
 | ||
|  |     Based on Stackoverflow C# rounded corner post  | ||
|  |     https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon | ||
|  |     """
 | ||
|  |     def GetProportionPoint(pt, segment, L, dx, dy): | ||
|  |         factor = float(segment) / L if L != 0 else segment | ||
|  |         return PVector((pt.x - dx * factor), (pt.y - dy * factor)) | ||
|  | 
 | ||
|  |     # Vector 1 | ||
|  |     dx1 = pc.x - p1.x | ||
|  |     dy1 = pc.y - p1.y | ||
|  | 
 | ||
|  |     # Vector 2 | ||
|  |     dx2 = pc.x - p2.x | ||
|  |     dy2 = pc.y - p2.y | ||
|  | 
 | ||
|  |     # Angle between vector 1 and vector 2 divided by 2 | ||
|  |     angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2 | ||
|  | 
 | ||
|  |     # The length of segment between angular point and the | ||
|  |     # points of intersection with the circle of a given radius | ||
|  |     tng = abs(tan(angle)) | ||
|  |     segment = r / tng if tng != 0 else r | ||
|  | 
 | ||
|  |     # Check the segment | ||
|  |     length1 = sqrt(dx1 * dx1 + dy1 * dy1) | ||
|  |     length2 = sqrt(dx2 * dx2 + dy2 * dy2) | ||
|  | 
 | ||
|  |     min_len = min(length1, length2) | ||
|  | 
 | ||
|  |     if segment > min_len: | ||
|  |         segment = min_len | ||
|  |         max_r = min_len * abs(tan(angle)) | ||
|  |     else: | ||
|  |         max_r = r | ||
|  | 
 | ||
|  |     # Points of intersection are calculated by the proportion between | ||
|  |     # length of vector and the length of the segment. | ||
|  |     p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1) | ||
|  |     p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2) | ||
|  | 
 | ||
|  |     # Calculation of the coordinates of the circle | ||
|  |     # center by the addition of angular vectors. | ||
|  |     dx = pc.x * 2 - p1Cross.x - p2Cross.x | ||
|  |     dy = pc.y * 2 - p1Cross.y - p2Cross.y | ||
|  | 
 | ||
|  |     L = sqrt(dx * dx + dy * dy) | ||
|  |     d = sqrt(segment * segment + max_r * max_r) | ||
|  | 
 | ||
|  |     circlePoint = GetProportionPoint(pc, d, L, dx, dy) | ||
|  | 
 | ||
|  |     # StartAngle and EndAngle of arc | ||
|  |     startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x) | ||
|  |     endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x) | ||
|  | 
 | ||
|  |     # Sweep angle | ||
|  |     sweepAngle = endAngle - startAngle | ||
|  | 
 | ||
|  |     # Some additional checks | ||
|  |     if sweepAngle < 0: | ||
|  |         startAngle, endAngle = endAngle, startAngle | ||
|  |         sweepAngle = -sweepAngle | ||
|  | 
 | ||
|  |     if sweepAngle > PI: | ||
|  |         startAngle, endAngle = endAngle, startAngle | ||
|  |         sweepAngle = TWO_PI - sweepAngle | ||
|  | 
 | ||
|  |     # Draw result using graphics | ||
|  |     # noStroke() | ||
|  |     with pushStyle(): | ||
|  |         noStroke() | ||
|  |         beginShape() | ||
|  |         vertex(p1.x, p1.y) | ||
|  |         vertex(p1Cross.x, p1Cross.y) | ||
|  |         vertex(p2Cross.x, p2Cross.y) | ||
|  |         vertex(p2.x, p2.y) | ||
|  |         endShape(CLOSE) | ||
|  | 
 | ||
|  |     line(p1.x, p1.y, p1Cross.x, p1Cross.y) | ||
|  |     line(p2.x, p2.y, p2Cross.x, p2Cross.y) | ||
|  |     arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r, | ||
|  |         startAngle, startAngle + sweepAngle, OPEN) |