main
Alexandre B A Villares 2020-09-23 22:43:35 -03:00
rodzic 45762bcafc
commit 1643ea271a
5 zmienionych plików z 240 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,127 @@
# -*- coding: UTF-8 -*-
def arc_filleted_poly(p_list, r_list, open_poly=False, arc_func=arc):
"""
draws a 'filleted' polygon with variable radius
dependent on roundedCorner()
"""
p_list = list(p_list)
r_list = list(r_list)
if not open_poly:
# with pushStyle():
# noStroke()
# beginShape()
# for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
# m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
# vertex(m.x, m.y)
# endShape(CLOSE)
for p0, p1, p2, r in zip(p_list,
[p_list[-1]] + p_list[:-1],
[p_list[-2]] + [p_list[-1]] + p_list[:-2],
[r_list[-1]] + r_list[:-1]
):
m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
roundedCorner(p1, m1, m2, r, arc_func)
else:
for p0, p1, p2, r in zip(p_list[:-1],
[p_list[-1]] + p_list[:-2],
[p_list[-2]] + [p_list[-1]] + p_list[:-3],
[r_list[-1]] + r_list[:-2]
):
m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
roundedCorner(p1, m1, m2, r, arc_func)
def roundedCorner(pc, p1, p2, r, arc_func):
"""
Based on Stackoverflow C# rounded corner post
https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
"""
def GetProportionPoint(pt, segment, L, dx, dy):
factor = float(segment) / L if L != 0 else segment
return PVector((pt.x - dx * factor), (pt.y - dy * factor))
# Vector 1
dx1 = pc.x - p1.x
dy1 = pc.y - p1.y
# Vector 2
dx2 = pc.x - p2.x
dy2 = pc.y - p2.y
# Angle between vector 1 and vector 2 divided by 2
angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
# The length of segment between angular point and the
# points of intersection with the circle of a given radius
tng = abs(tan(angle))
segment = r / tng if tng != 0 else r
# Check the segment
length1 = sqrt(dx1 * dx1 + dy1 * dy1)
length2 = sqrt(dx2 * dx2 + dy2 * dy2)
min_len = min(length1, length2)
if segment > min_len:
segment = min_len
max_r = min_len * abs(tan(angle))
else:
max_r = r
# Points of intersection are calculated by the proportion between
# length of vector and the length of the segment.
p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
# Calculation of the coordinates of the circle
# center by the addition of angular vectors.
dx = pc.x * 2 - p1Cross.x - p2Cross.x
dy = pc.y * 2 - p1Cross.y - p2Cross.y
L = sqrt(dx * dx + dy * dy)
d = sqrt(segment * segment + max_r * max_r)
circlePoint = GetProportionPoint(pc, d, L, dx, dy)
# StartAngle and EndAngle of arc
startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
# Sweep angle
sweepAngle = endAngle - startAngle
# Some additional checks
if sweepAngle < 0:
startAngle, endAngle = endAngle, startAngle
sweepAngle = -sweepAngle
if sweepAngle > PI:
startAngle, endAngle = endAngle, startAngle
sweepAngle = TWO_PI - sweepAngle
# Draw result using graphics
# noStroke()
# with pushStyle():
# noStroke()
# beginShape()
# vertex(p1.x, p1.y)
# vertex(p1Cross.x, p1Cross.y)
# vertex(p2Cross.x, p2Cross.y)
# vertex(p2.x, p2.y)
# endShape(CLOSE)
circle(p1.x, p1.y, 5)
circle(p1Cross.x, p1Cross.y, 5)
circle(p2Cross.x, p2Cross.y, 5)
circle(p2.x, p2.y, 5)
line(p1.x, p1.y, p1Cross.x, p1Cross.y)
line(p2.x, p2.y, p2Cross.x, p2Cross.y)
arc_func(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
startAngle, startAngle + sweepAngle)

Wyświetl plik

@ -0,0 +1,26 @@
# -*- coding: UTF-8 -*-
class Ponto():
SIZE = 5
def __init__(self, x, y):
self.ox = x
self.oy = y
self.x = x
self.y = y
self.f = 255
def __len__(self):
return 2
def __iter__(self):
return iter((self.x, self.y))
def __getitem__(self, i):
return (self.x, self.y)[i]
def draw(self):
fill(self.f)
circle(self.x, self.y, Ponto.SIZE)

Plik binarny nie jest wyświetlany.

Po

Szerokość:  |  Wysokość:  |  Rozmiar: 166 KiB

Wyświetl plik

@ -0,0 +1,81 @@
from random import sample
from itertools import product
from villares.line_geometry import * # github.com/villares/villares
from arc_filleted_poly import arc_filleted_poly
from ponto import Ponto
BORDER = 50
SIZE = 150
r_list = [10, 20, 30, 40, -10, -20, -30, -40]
p_list = []
dragg = []
def setup():
global grid
size(400, 400)
grid = list(product(range(BORDER, height - BORDER + 1, SIZE),
range(BORDER, height - BORDER + 1, SIZE)))
make_points(8)
def draw():
background(200)
if len(dragg) == 2:
d_line = Line(*dragg)
strokeWeight(0.5)
d_line.draw()
lines = inter_lines(d_line, p_list)
for inter_line in lines:
strokeWeight(2)
inter_line.draw()
noFill()
strokeWeight(1)
stroke(255)
poly(map(tuple, p_list))
stroke(0)
fill(100, 100)
arc_filleted_poly(p_list, map(abs, r_list))
for p in p_list:
if len(dragg) == 2:
if area(p, dragg[0], dragg[1]) > 0:
p.f = color(255, 0, 0)
else:
p.f = color(0, 0, 255)
else:
p.f = 255
p.draw()
def keyPressed():
if key == ' ': make_points(8); saveFrame("###.png")
if key == 'm': move_points()
def mousePressed():
dragg[:] = [(mouseX, mouseY)]
def mouseDragged():
if len(dragg) == 1:
dragg.append((mouseX, mouseY))
else:
dragg[1] = (mouseX, mouseY)
def area(p0, p1, p2):
a = (p1[0] * (p2[1] - p0[1]) +
p2[0] * (p0[1] - p1[1]) +
p0[0] * (p1[1] - p2[1]))
return a
# def mouseReleased():
# dragg[:] = []
def make_points(num):
p_list[:] = []
for x, y in sample(grid, num):
p_list.append(Ponto(x, y))

Wyświetl plik

@ -26,6 +26,12 @@ Some of the tools I have used:
---
![sketch_2020_09_23a](2020/sketch_2020_09_23a/sketch_2020_09_23a.gif)
[sketch_2020_09_23a](https://github.com/villares/sketch-a-day/tree/master/2020/sketch_2020_09_23a) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]
---
![sketch_2020_09_22a](2020/sketch_2020_09_22a/sketch_2020_09_22a.gif)
[sketch_2020_09_22a](https://github.com/villares/sketch-a-day/tree/master/2020/sketch_2020_09_22a) [[Py.Processing](https://villares.github.io/como-instalar-o-processing-modo-python/index-EN)]