sketch-a-day/2020/sketch_2020_09_23a/arc_filleted_poly.py

128 wiersze
4.2 KiB
Python

# -*- coding: UTF-8 -*-
def arc_filleted_poly(p_list, r_list, open_poly=False, arc_func=arc):
"""
draws a 'filleted' polygon with variable radius
dependent on roundedCorner()
"""
p_list = list(p_list)
r_list = list(r_list)
if not open_poly:
# with pushStyle():
# noStroke()
# beginShape()
# for p0, p1 in zip(p_list, [p_list[-1]] + p_list[:-1]):
# m = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
# vertex(m.x, m.y)
# endShape(CLOSE)
for p0, p1, p2, r in zip(p_list,
[p_list[-1]] + p_list[:-1],
[p_list[-2]] + [p_list[-1]] + p_list[:-2],
[r_list[-1]] + r_list[:-1]
):
m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
roundedCorner(p1, m1, m2, r, arc_func)
else:
for p0, p1, p2, r in zip(p_list[:-1],
[p_list[-1]] + p_list[:-2],
[p_list[-2]] + [p_list[-1]] + p_list[:-3],
[r_list[-1]] + r_list[:-2]
):
m1 = (PVector(p0.x, p0.y) + PVector(p1.x, p1.y)) / 2
m2 = (PVector(p2.x, p2.y) + PVector(p1.x, p1.y)) / 2
roundedCorner(p1, m1, m2, r, arc_func)
def roundedCorner(pc, p1, p2, r, arc_func):
"""
Based on Stackoverflow C# rounded corner post
https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon
"""
def GetProportionPoint(pt, segment, L, dx, dy):
factor = float(segment) / L if L != 0 else segment
return PVector((pt.x - dx * factor), (pt.y - dy * factor))
# Vector 1
dx1 = pc.x - p1.x
dy1 = pc.y - p1.y
# Vector 2
dx2 = pc.x - p2.x
dy2 = pc.y - p2.y
# Angle between vector 1 and vector 2 divided by 2
angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2
# The length of segment between angular point and the
# points of intersection with the circle of a given radius
tng = abs(tan(angle))
segment = r / tng if tng != 0 else r
# Check the segment
length1 = sqrt(dx1 * dx1 + dy1 * dy1)
length2 = sqrt(dx2 * dx2 + dy2 * dy2)
min_len = min(length1, length2)
if segment > min_len:
segment = min_len
max_r = min_len * abs(tan(angle))
else:
max_r = r
# Points of intersection are calculated by the proportion between
# length of vector and the length of the segment.
p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1)
p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2)
# Calculation of the coordinates of the circle
# center by the addition of angular vectors.
dx = pc.x * 2 - p1Cross.x - p2Cross.x
dy = pc.y * 2 - p1Cross.y - p2Cross.y
L = sqrt(dx * dx + dy * dy)
d = sqrt(segment * segment + max_r * max_r)
circlePoint = GetProportionPoint(pc, d, L, dx, dy)
# StartAngle and EndAngle of arc
startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x)
endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x)
# Sweep angle
sweepAngle = endAngle - startAngle
# Some additional checks
if sweepAngle < 0:
startAngle, endAngle = endAngle, startAngle
sweepAngle = -sweepAngle
if sweepAngle > PI:
startAngle, endAngle = endAngle, startAngle
sweepAngle = TWO_PI - sweepAngle
# Draw result using graphics
# noStroke()
# with pushStyle():
# noStroke()
# beginShape()
# vertex(p1.x, p1.y)
# vertex(p1Cross.x, p1Cross.y)
# vertex(p2Cross.x, p2Cross.y)
# vertex(p2.x, p2.y)
# endShape(CLOSE)
circle(p1.x, p1.y, 5)
circle(p1Cross.x, p1Cross.y, 5)
circle(p2Cross.x, p2Cross.y, 5)
circle(p2.x, p2.y, 5)
line(p1.x, p1.y, p1Cross.x, p1Cross.y)
line(p2.x, p2.y, p2Cross.x, p2Cross.y)
arc_func(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r,
startAngle, startAngle + sweepAngle)