rtlsdr-wsprd/rtlsdr_wsprd.c

860 wiersze
29 KiB
C

/*
* FreeBSD License
* Copyright (c) 2016-2021, Guenael Jouchet (VA2GKA)
* All rights reserved.
*
* This file is based on rtl-sdr project code and libraries:
* Github repository: https://github.com/osmocom/rtl-sdr
* Project web-page: https://osmocom.org/projects/rtl-sdr/wiki
* Contributions:
* Copyright (C) 2012 by Steve Markgraf <steve{at}steve-m.de>
* Copyright (C) 2012 by Hoernchen <la{at}tfc-server.de>
* Copyright (C) 2012 by Kyle Keen <keenerd{at}gmail.com>
* Copyright (C) 2013 by Elias Oenal <EliasOenal{at}gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <pthread.h>
#include <curl/curl.h>
#include <rtl-sdr.h>
#include "./rtlsdr_wsprd.h"
#include "wsprd/wsprd.h"
/* snprintf possible truncation allowed to prevent possible buffer overflow */
// Testing clang
// #pragma GCC diagnostic ignored "-Wformat-truncation"
/* Sampling definition for RTL devices */
#define SIGNAL_LENGHT 116
#define SIGNAL_SAMPLE_RATE 375
#define SAMPLING_RATE 2400000
#define FS4_RATE SAMPLING_RATE / 4 // = 600 kHz
#define DOWNSAMPLING SAMPLING_RATE / SIGNAL_SAMPLE_RATE // = 6400
#define DEFAULT_BUF_LENGTH (4 * 16384) // = 65536
/* Global declaration for these structs */
struct receiver_state rx_state;
struct receiver_options rx_options;
struct decoder_options dec_options;
struct decoder_results dec_results[50];
static rtlsdr_dev_t *rtl_device = NULL;
/* Thread stuff for separate decoding */
struct decoder_state {
pthread_t thread;
pthread_attr_t tattr;
pthread_rwlock_t rw;
pthread_cond_t ready_cond;
pthread_mutex_t ready_mutex;
};
struct decoder_state dec;
/* Thread stuff for separate RX (blocking function) */
struct dongle_state {
pthread_t thread;
};
struct dongle_state dongle;
/* Callback for each buffer received */
static void rtlsdr_callback(unsigned char *samples,
uint32_t samples_count,
void *ctx) {
/* FIR compensation filter coefs
Using : Octave/MATLAB code for generating compensation FIR coefficients
URL : https://github.com/WestCoastDSP/CIC_Octave_Matlab
*/
const static float zCoef[33] = {
-0.0027772683, -0.0005058826, 0.0049745750, -0.0034059318,
-0.0077557814, 0.0139375423, 0.0039896935, -0.0299394142,
0.0162250643, 0.0405130860, -0.0580746013, -0.0272104968,
0.1183705475, -0.0306029022, -0.2011241667, 0.1615898423,
0.5000000000,
0.1615898423, -0.2011241667, -0.0306029022, 0.1183705475,
-0.0272104968, -0.0580746013, 0.0405130860, 0.0162250643,
-0.0299394142, 0.0039896935, 0.0139375423, -0.0077557814,
-0.0034059318, 0.0049745750, -0.0005058826, -0.0027772683
};
int8_t *sigIn = (int8_t *)samples;
uint32_t sigLenght = samples_count;
static uint32_t decimationIndex = 0;
/* CIC buffers */
static int32_t Ix1, Ix2, Qx1, Qx2;
static int32_t Iy1, It1y, It1z, Qy1, Qt1y, Qt1z;
static int32_t Iy2, It2y, It2z, Qy2, Qt2y, Qt2z;
/* FIR compensation filter buffers */
static float firI[32], firQ[32];
float Isum, Qsum;
/* Convert unsigned to signed */
for (uint32_t i = 0; i < sigLenght; i++)
// XOR with a binary mask to flip the first bit (sign)
sigIn[i] ^= 0x80;
/* Economic mixer @ fs/4 (upper band)
At fs/4, sin and cosin calculation are no longer necessary.
0 | pi/2 | pi | 3pi/2
----------------------------
sin = 0 | 1 | 0 | -1 |
cos = 1 | 0 | -1 | 0 |
out_I = in_I * cos(x) - in_Q * sin(x)
out_Q = in_Q * cos(x) + in_I * sin(x)
(Weaver technique, keep the upper band, IQ inverted on RTL devices)
*/
int8_t tmp;
for (uint32_t i = 0; i < sigLenght; i += 8) {
tmp = -sigIn[i + 3];
sigIn[i + 3] = sigIn[i + 2];
sigIn[i + 2] = tmp;
sigIn[i + 4] = -sigIn[i + 4];
sigIn[i + 5] = -sigIn[i + 5];
tmp = -sigIn[i + 6];
sigIn[i + 6] = sigIn[i + 7];
sigIn[i + 7] = tmp;
}
/* CIC decimator (N=2)
Info: * Understanding CIC Compensation Filters
https://www.altera.com/en_US/pdfs/literature/an/an455.pdf
* Understanding cascaded integrator-comb filters
http://www.embedded.com/design/configurable-systems/4006446/Understanding-cascaded-integrator-comb-filters
*/
for (int32_t i = 0; i < sigLenght / 2; i++) {
/* Integrator stages (N=2) */
Ix1 += (int32_t)sigIn[i * 2];
Qx1 += (int32_t)sigIn[i * 2 + 1];
Ix2 += Ix1;
Qx2 += Qx1;
/* Decimation R=6400 */
decimationIndex++;
if (decimationIndex <= DOWNSAMPLING) {
continue;
}
// FIXME/TODO : some optimization here
/* 1st Comb */
Iy1 = Ix2 - It1z;
It1z = It1y;
It1y = Ix2;
Qy1 = Qx2 - Qt1z;
Qt1z = Qt1y;
Qt1y = Qx2;
/* 2nd Comd */
Iy2 = Iy1 - It2z;
It2z = It2y;
It2y = Iy1;
Qy2 = Qy1 - Qt2z;
Qt2z = Qt2y;
Qt2y = Qy1;
// FIXME/TODO : could be made with int32_t (8 bits, 20 bits)
/* FIR compensation filter */
Isum = 0.0, Qsum = 0.0;
for (uint32_t j = 0; j < 32; j++) {
Isum += firI[j] * zCoef[j];
Qsum += firQ[j] * zCoef[j];
if (j < 31) {
firI[j] = firI[j + 1];
firQ[j] = firQ[j + 1];
}
}
firI[31] = (float)Iy2;
firQ[31] = (float)Qy2;
Isum += firI[31] * zCoef[32];
Qsum += firQ[31] * zCoef[32];
/* Save the result in the buffer */
if (rx_state.iqIndex < (SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE)) {
/* Lock the buffer during writing */
pthread_rwlock_wrlock(&dec.rw);
rx_state.iSamples[rx_state.iqIndex] = Isum;
rx_state.qSamples[rx_state.iqIndex] = Qsum;
pthread_rwlock_unlock(&dec.rw);
rx_state.iqIndex++;
} else {
if (rx_state.decode_flag == false) {
/* Send a signal to the other thread to start the decoding */
pthread_mutex_lock(&dec.ready_mutex);
pthread_cond_signal(&dec.ready_cond);
pthread_mutex_unlock(&dec.ready_mutex);
rx_state.decode_flag = true;
}
}
decimationIndex = 0;
}
}
/* Thread for RX blocking function */
static void *rtlsdr_rx(void *arg) {
/* Read & blocking call */
rtlsdr_read_async(rtl_device, rtlsdr_callback, NULL, 0, DEFAULT_BUF_LENGTH);
exit(0);
return 0;
}
void postSpots(uint32_t n_results) {
CURL *curl;
CURLcode res;
char url[256];
time_t rawtime;
time(&rawtime);
struct tm *gtm = gmtime(&rawtime);
for (uint32_t i = 0; i < n_results; i++) {
snprintf(url, sizeof(url) - 1, "http://wsprnet.org/post?function=wspr&rcall=%s&rgrid=%s&rqrg=%.6f&date=%s&time=%s&sig=%.0f&dt=%.1f&tqrg=%.6f&tcall=%s&tgrid=%s&dbm=%s&version=0.2r_wsprd&mode=2",
dec_options.rcall,
dec_options.rloc,
dec_results[i].freq,
dec_options.date,
dec_options.uttime,
dec_results[i].snr,
dec_results[i].dt,
dec_results[i].freq,
dec_results[i].call,
dec_results[i].loc,
dec_results[i].pwr);
printf("Spot : %04d-%02d-%02d %02d:%02d:%02d %6.2f %6.2f %10.6f %2d %7s %6s %2s\n",
gtm->tm_year + 1900,
gtm->tm_mon + 1,
gtm->tm_mday,
gtm->tm_hour,
gtm->tm_min,
gtm->tm_sec,
dec_results[i].snr,
dec_results[i].dt,
dec_results[i].freq,
(int)dec_results[i].drift,
dec_results[i].call,
dec_results[i].loc,
dec_results[i].pwr);
curl = curl_easy_init();
if (curl) {
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_NOBODY, 1);
res = curl_easy_perform(curl);
if (res != CURLE_OK)
fprintf(stderr, "curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
curl_easy_cleanup(curl);
}
}
if (n_results == 0) {
printf("No spot %04d-%02d-%02d %02d:%02dz\n",
gtm->tm_year + 1900,
gtm->tm_mon + 1,
gtm->tm_mday,
gtm->tm_hour,
gtm->tm_min);
}
}
static void *wsprDecoder(void *arg) {
/* WSPR decoder use buffers of 45000 samples (hardcoded)
(120 sec max @ 375sps = 45000 samples)
Real = 375 * 116 = 43500
FIXME with SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE ??
*/
static float iSamples[45000] = {0};
static float qSamples[45000] = {0};
static uint32_t samples_len;
int32_t n_results = 0;
while (!rx_state.exit_flag) {
pthread_mutex_lock(&dec.ready_mutex);
pthread_cond_wait(&dec.ready_cond, &dec.ready_mutex);
pthread_mutex_unlock(&dec.ready_mutex);
if (rx_state.exit_flag)
/* Abord case, final sig */
break;
/* Lock the buffer access and make a local copy */
pthread_rwlock_wrlock(&dec.rw);
memcpy(iSamples, rx_state.iSamples, rx_state.iqIndex * sizeof(float));
memcpy(qSamples, rx_state.qSamples, rx_state.iqIndex * sizeof(float));
samples_len = rx_state.iqIndex; // Overkill ?
pthread_rwlock_unlock(&dec.rw);
/* Date and time will be updated/overload during the search & decoding process
Make a simple copy
*/
memcpy(dec_options.date, rx_options.date, sizeof(rx_options.date));
memcpy(dec_options.uttime, rx_options.uttime, sizeof(rx_options.uttime));
/* DEBUG -- Save samples HERE */
/* Search & decode the signal */
wspr_decode(iSamples, qSamples, samples_len, dec_options, dec_results, &n_results);
postSpots(n_results);
}
pthread_exit(NULL);
}
double atofs(char *s) {
/* standard suffixes */
char last;
uint32_t len;
double suff = 1.0;
len = strlen(s);
last = s[len - 1];
s[len - 1] = '\0';
switch (last) {
case 'g':
case 'G':
suff *= 1e3;
case 'm':
case 'M':
suff *= 1e3;
case 'k':
case 'K':
suff *= 1e3;
suff *= atof(s);
s[len - 1] = last;
return suff;
}
s[len - 1] = last;
return atof(s);
}
int32_t parse_u64(char *s, uint64_t *const value) {
uint_fast8_t base = 10;
char *s_end;
uint64_t u64_value;
if (strlen(s) > 2) {
if (s[0] == '0') {
if ((s[1] == 'x') || (s[1] == 'X')) {
base = 16;
s += 2;
} else if ((s[1] == 'b') || (s[1] == 'B')) {
base = 2;
s += 2;
}
}
}
s_end = s;
u64_value = strtoull(s, &s_end, base);
if ((s != s_end) && (*s_end == 0)) {
*value = u64_value;
return 1;
} else {
return 0;
}
}
/* Reset flow control variable & decimation variables */
void initSampleStorage() {
rx_state.decode_flag = false;
rx_state.iqIndex = 0;
}
/* Default options for the decoder */
void initDecoder_options() {
dec_options.usehashtable = 0;
dec_options.npasses = 2;
dec_options.subtraction = 1;
dec_options.quickmode = 0;
}
/* Default options for the receiver */
void initrx_options() {
rx_options.gain = 290;
rx_options.autogain = 0;
rx_options.ppm = 0;
rx_options.shift = 0;
rx_options.directsampling = 0;
rx_options.maxloop = 0;
rx_options.device = 0;
}
void sigint_callback_handler(int signum) {
fprintf(stdout, "Caught signal %d\n", signum);
rx_state.exit_flag = true;
}
int32_t readfile(float *iSamples, float *qSamples, char *filename) {
FILE *fd = NULL;
float filebuffer[2 * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE];
fd = fopen(filename, "rb");
if (fd == NULL) {
fprintf(stderr, "Cannot open data file...\n");
return 1;
}
int32_t res = fseek(fd, 26, SEEK_SET);
if (res) {
fprintf(stderr, "Cannot set file offset...\n");
fclose(fd);
return 1;
}
int32_t nread = fread(filebuffer, sizeof(float), 2 * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE, fd);
if (nread != 2 * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE) {
fprintf(stderr, "Cannot read all the data!\n");
fclose(fd);
return 1;
}
for (int32_t i = 0; i < SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE; i++) {
iSamples[i] = filebuffer[2 * i];
qSamples[i] = -filebuffer[2 * i + 1];
}
fclose(fd);
return 0;
}
int32_t writefile(float *iSamples, float *qSamples, char *filename, uint32_t type, double freq) {
FILE *fd = NULL;
char info[15] = {}; // Info descriptor, not used for now
float filebuffer[2 * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE];
for (int32_t i = 0; i < SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE; i++) {
filebuffer[2 * i] = iSamples[i];
filebuffer[2 * i + 1] = -qSamples[i];
}
fd = fopen(filename, "wb");
if (fd == NULL) {
fprintf(stderr, "Cannot open data file...\n");
return 1;
}
// Header
fwrite(&info, sizeof(char), 14, fd);
fwrite(&type, sizeof(uint32_t), 1, fd);
fwrite(&freq, sizeof(double), 1, fd);
int32_t nwrite = fwrite(filebuffer, sizeof(float), 2 * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE, fd);
if (nwrite != 2 * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE) {
fprintf(stderr, "Cannot write all the data!\n");
return 1;
}
fclose(fd);
return 0;
}
void usage(void) {
fprintf(stderr,
"rtlsdr_wsprd, a simple WSPR daemon for RTL receivers\n\n"
"Use:\trtlsdr_wsprd -f frequency -c callsign -l locator [options]\n"
"\t-f dial frequency [(,k,M) Hz] or band string\n"
"\t If band string is used, the default dial frequency will used.\n"
"\t Bands: LF LF-15 MF MF-15 160m 160m-15 80m 60m 40m 30m 20m 17m 15m 12m 10m 6m 4m 2m 1m25 70cm 23cm\n"
"\t ('-15' suffix indicates the WSPR-15 region of band.)\n"
"\t-c your callsign (12 chars max)\n"
"\t-l your locator grid (6 chars max)\n"
"Receiver extra options:\n"
"\t-g gain [0-49] (default: 29)\n"
"\t-a auto gain (default: off)\n"
"\t-o frequency offset (default: 0)\n"
"\t-p crystal correction factor (ppm) (default: 0)\n"
"\t-u upconverter (default: 0, example: 125M)\n"
"\t-d direct dampling [0,1,2] (default: 0, 1 for I input, 2 for Q input)\n"
"\t-n max iterations (default: 0 = infinite loop)\n"
"\t-i device index (in case of multiple receivers, default: 0)\n"
"Decoder extra options:\n"
"\t-H use the hash table (could caught signal 11 on RPi)\n"
"\t-Q quick mode, doesn't dig deep for weak signals\n"
"\t-S single pass mode, no subtraction (same as original wsprd)\n"
"Example:\n"
"\trtlsdr_wsprd -f 2m -c A1XYZ -l AB12cd -g 29 -o -4200\n");
exit(1);
}
int main(int argc, char **argv) {
uint32_t opt;
int32_t rtl_result;
int32_t rtl_count;
char rtl_vendor[256], rtl_product[256], rtl_serial[256];
initrx_options();
initDecoder_options();
/* RX buffer allocation */
rx_state.iSamples = malloc(sizeof(float) * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE);
rx_state.qSamples = malloc(sizeof(float) * SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE);
/* Stop condition setup */
rx_state.exit_flag = false;
rx_state.decode_flag = false;
uint32_t nLoop = 0;
if (argc <= 1)
usage();
while ((opt = getopt(argc, argv, "f:c:l:g:a:o:p:u:d:n:i:H:Q:S")) != -1) {
switch (opt) {
case 'f': // Frequency
if (!strcasecmp(optarg, "LF")) {
rx_options.dialfreq = 136000;
} else if (!strcasecmp(optarg, "LF-15")) {
rx_options.dialfreq = 136112;
} else if (!strcasecmp(optarg, "MF")) {
rx_options.dialfreq = 474200;
} else if (!strcasecmp(optarg, "MF-15")) {
rx_options.dialfreq = 474312;
} else if (!strcasecmp(optarg, "160m")) {
rx_options.dialfreq = 1836600;
} else if (!strcasecmp(optarg, "160m-15")) {
rx_options.dialfreq = 1838212;
} else if (!strcasecmp(optarg, "80m")) {
rx_options.dialfreq = 3592600;
} else if (!strcasecmp(optarg, "60m")) {
rx_options.dialfreq = 5287200;
} else if (!strcasecmp(optarg, "40m")) {
rx_options.dialfreq = 7038600;
} else if (!strcasecmp(optarg, "30m")) {
rx_options.dialfreq = 10138700;
} else if (!strcasecmp(optarg, "20m")) {
rx_options.dialfreq = 14095600;
} else if (!strcasecmp(optarg, "17m")) {
rx_options.dialfreq = 18104600;
} else if (!strcasecmp(optarg, "15m")) {
rx_options.dialfreq = 21094600;
} else if (!strcasecmp(optarg, "12m")) {
rx_options.dialfreq = 24924600;
} else if (!strcasecmp(optarg, "10m")) {
rx_options.dialfreq = 28124600;
} else if (!strcasecmp(optarg, "6m")) {
rx_options.dialfreq = 50293000;
} else if (!strcasecmp(optarg, "4m")) {
rx_options.dialfreq = 70091000;
} else if (!strcasecmp(optarg, "2m")) {
rx_options.dialfreq = 144489000;
} else if (!strcasecmp(optarg, "1m25")) {
rx_options.dialfreq = 222280000;
} else if (!strcasecmp(optarg, "70cm")) {
rx_options.dialfreq = 432300000;
} else if (!strcasecmp(optarg, "23cm")) {
rx_options.dialfreq = 1296500000;
} else {
rx_options.dialfreq = (uint32_t)atofs(optarg);
}
break;
case 'c': // Callsign
snprintf(dec_options.rcall, sizeof(dec_options.rcall), "%.12s", optarg);
break;
case 'l': // Locator / Grid
snprintf(dec_options.rloc, sizeof(dec_options.rloc), "%.6s", optarg);
break;
case 'g': // Small signal amplifier gain
rx_options.gain = atoi(optarg);
if (rx_options.gain < 0) rx_options.gain = 0;
if (rx_options.gain > 49) rx_options.gain = 49;
rx_options.gain *= 10;
break;
case 'a': // Auto gain
rx_options.autogain = atoi(optarg);
if (rx_options.autogain < 0) rx_options.autogain = 0;
if (rx_options.autogain > 1) rx_options.autogain = 1;
break;
case 'o': // Fine frequency correction
rx_options.shift = atoi(optarg);
break;
case 'p':
rx_options.ppm = atoi(optarg);
break;
case 'u': // Upconverter frequency
rx_options.upconverter = (uint32_t)atofs(optarg);
break;
case 'd': // Direct Sampling
rx_options.directsampling = (uint32_t)atofs(optarg);
break;
case 'n': // Stop after n iterations
rx_options.maxloop = (uint32_t)atofs(optarg);
break;
case 'i': // Select the device to use
rx_options.device = (uint32_t)atofs(optarg);
break;
case 'H': // Decoder option, use a hastable
dec_options.usehashtable = 1;
break;
case 'Q': // Decoder option, faster
dec_options.quickmode = 1;
break;
case 'S': // Decoder option, single pass mode (same as original wsprd)
dec_options.subtraction = 0;
dec_options.npasses = 1;
break;
default:
usage();
break;
}
}
if (rx_options.dialfreq == 0) {
fprintf(stderr, "Please specify a dial frequency.\n");
fprintf(stderr, " --help for usage...\n");
exit(1);
}
if (dec_options.rcall[0] == 0) {
fprintf(stderr, "Please specify your callsign.\n");
fprintf(stderr, " --help for usage...\n");
exit(1);
}
if (dec_options.rloc[0] == 0) {
fprintf(stderr, "Please specify your locator.\n");
fprintf(stderr, " --help for usage...\n");
exit(1);
}
/* Calcule shift offset */
rx_options.realfreq = rx_options.dialfreq + rx_options.shift + rx_options.upconverter;
/* Store the frequency used for the decoder */
dec_options.freq = rx_options.dialfreq;
/* If something goes wrong... */
signal(SIGINT, &sigint_callback_handler);
signal(SIGTERM, &sigint_callback_handler);
signal(SIGILL, &sigint_callback_handler);
signal(SIGFPE, &sigint_callback_handler);
signal(SIGSEGV, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
/* Init & parameter the device */
rtl_count = rtlsdr_get_device_count();
if (!rtl_count) {
fprintf(stderr, "No supported devices found\n");
return EXIT_FAILURE;
}
fprintf(stderr, "Found %d device(s):\n", rtl_count);
for (uint32_t i = 0; i < rtl_count; i++) {
rtlsdr_get_device_usb_strings(i, rtl_vendor, rtl_product, rtl_serial);
fprintf(stderr, " %d: %s, %s, SN: %s\n", i, rtl_vendor, rtl_product, rtl_serial);
}
fprintf(stderr, "\nUsing device %d: %s\n", rx_options.device, rtlsdr_get_device_name(rx_options.device));
rtl_result = rtlsdr_open(&rtl_device, rx_options.device);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to open rtlsdr device #%d.\n", rx_options.device);
return EXIT_FAILURE;
}
if (rx_options.directsampling) {
rtl_result = rtlsdr_set_direct_sampling(rtl_device, rx_options.directsampling);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to set direct sampling\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
}
rtl_result = rtlsdr_set_sample_rate(rtl_device, SAMPLING_RATE);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to set sample rate\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
rtl_result = rtlsdr_set_tuner_gain_mode(rtl_device, 1);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to enable manual gain\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
if (rx_options.autogain) {
rtl_result = rtlsdr_set_tuner_gain_mode(rtl_device, 0);
if (rtl_result != 0) {
fprintf(stderr, "ERROR: Failed to set tuner gain\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
} else {
rtl_result = rtlsdr_set_tuner_gain(rtl_device, rx_options.gain);
if (rtl_result != 0) {
fprintf(stderr, "ERROR: Failed to set tuner gain\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
}
if (rx_options.ppm != 0) {
rtl_result = rtlsdr_set_freq_correction(rtl_device, rx_options.ppm);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to set ppm error\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
}
rtl_result = rtlsdr_set_center_freq(rtl_device, rx_options.realfreq + FS4_RATE + 1500);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to set frequency\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
rtl_result = rtlsdr_reset_buffer(rtl_device);
if (rtl_result < 0) {
fprintf(stderr, "ERROR: Failed to reset buffers.\n");
rtlsdr_close(rtl_device);
return EXIT_FAILURE;
}
/* Print used parameter */
time_t rawtime;
time(&rawtime);
struct tm *gtm = gmtime(&rawtime);
printf("\nStarting rtlsdr-wsprd (%04d-%02d-%02d, %02d:%02dz) -- Version 0.3\n",
gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday, gtm->tm_hour, gtm->tm_min);
printf(" Callsign : %s\n", dec_options.rcall);
printf(" Locator : %s\n", dec_options.rloc);
printf(" Dial freq. : %d Hz\n", rx_options.dialfreq);
printf(" Real freq. : %d Hz\n", rx_options.realfreq);
printf(" PPM factor : %d\n", rx_options.ppm);
if (rx_options.autogain)
printf(" Auto gain : enable\n");
else
printf(" Gain : %d dB\n", rx_options.gain / 10);
/* Time alignment stuff */
struct timeval lTime;
gettimeofday(&lTime, NULL);
uint32_t sec = lTime.tv_sec % 120;
uint32_t usec = sec * 1000000 + lTime.tv_usec;
uint32_t uwait = 120000000 - usec;
printf("Wait for time sync (start in %d sec)\n\n", uwait / 1000000);
printf(" Date Time(z) SNR DT Freq Dr Call Loc Pwr\n");
/* Prepare a low priority param for the decoder thread */
struct sched_param param;
pthread_attr_init(&dec.tattr);
pthread_attr_setschedpolicy(&dec.tattr, SCHED_RR);
pthread_attr_getschedparam(&dec.tattr, &param);
param.sched_priority = 90; // = sched_get_priority_min();
pthread_attr_setschedparam(&dec.tattr, &param);
/* Create a thread and stuff for separate decoding
Info : https://computing.llnl.gov/tutorials/pthreads/
*/
pthread_rwlock_init(&dec.rw, NULL);
pthread_cond_init(&dec.ready_cond, NULL);
pthread_mutex_init(&dec.ready_mutex, NULL);
pthread_create(&dongle.thread, NULL, rtlsdr_rx, NULL);
pthread_create(&dec.thread, &dec.tattr, wsprDecoder, NULL);
/* Main loop : Wait, read, decode */
while (!rx_state.exit_flag && !(rx_options.maxloop && (nLoop >= rx_options.maxloop))) {
/* Wait for time Sync on 2 mins */
gettimeofday(&lTime, NULL);
sec = lTime.tv_sec % 120;
usec = sec * 1000000 + lTime.tv_usec;
uwait = 120000000 - usec + 10000; // Adding 10ms, to be sure to reach this next minute
usleep(uwait);
/* Use the Store the date at the begin of the frame */
time(&rawtime);
gtm = gmtime(&rawtime);
// FIXME: Complier warning about mixing int & date
snprintf(rx_options.date, sizeof(rx_options.date), "%02d%02d%02d", gtm->tm_year - 100, gtm->tm_mon + 1, gtm->tm_mday);
snprintf(rx_options.uttime, sizeof(rx_options.uttime), "%02d%02d", gtm->tm_hour, gtm->tm_min);
/* Start to store the samples */
initSampleStorage();
while ((rx_state.exit_flag == false) &&
(rx_state.iqIndex < (SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE))) {
usleep(250000);
}
nLoop++;
}
/* Stop the RX and free the blocking function */
rtlsdr_cancel_async(rtl_device);
/* Close the RTL device */
rtlsdr_close(rtl_device);
printf("Bye!\n");
/* Wait the thread join (send a signal before to terminate the job) */
pthread_mutex_lock(&dec.ready_mutex);
pthread_cond_signal(&dec.ready_cond);
pthread_mutex_unlock(&dec.ready_mutex);
pthread_join(dec.thread, NULL);
pthread_join(dongle.thread, NULL);
/* Destroy the lock/cond/thread */
pthread_rwlock_destroy(&dec.rw);
pthread_cond_destroy(&dec.ready_cond);
pthread_mutex_destroy(&dec.ready_mutex);
pthread_exit(NULL);
return EXIT_SUCCESS;
}