rtlsdr-wsprd/wsprd/wsprd.c

849 wiersze
29 KiB
C

/*
This file is part of program wsprd, a detector/demodulator/decoder
for the Weak Signal Propagation Reporter (WSPR) mode.
File name: wsprd.c
Copyright 2001-2015, Joe Taylor, K1JT
Much of the present code is based on work by Steven Franke, K9AN,
which in turn was based on earlier work by K1JT.
Copyright 2014-2015, Steven Franke, K9AN
Minor modifications
Copyright 2016, Guenael Jouchet, VA2GKA
License: GNU GPL v3
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <fftw3.h>
#include "./wsprd.h"
#include "./fano.h"
#include "./nhash.h"
#include "./wsprd_utils.h"
#include "./wsprsim_utils.h"
#include "./metric_tables.h"
#define DF 375.0 / 256.0
#define DT 1.0 / 375.0
#define TWOPIDT 2.0 * M_PI * DT
#define NIQ 45000
#define NBITS 81
#define NSYM 162
#define NSPERSYM 256
#define NFILT 256
#define NSIG NSYM * NSPERSYM
/* Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT, FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE */
#define PATIENCE FFTW_ESTIMATE
fftwf_plan PLAN1,
PLAN2,
PLAN3;
int32_t printdata=0;
uint8_t pr3[NSYM]= {
1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,
0,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,
0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,
1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,
0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,
0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,
0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,1,
0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
0,0
};
/***********************************************************************
* mode = 0: no frequency or drift search. find best time lag. *
* 1: no time lag or drift search. find best frequency. *
* 2: no frequency or time lag search. calculate soft-decision *
* symbols using passed frequency and shift. *
************************************************************************/
void sync_and_demodulate(float *id, float *qd, long np,
uint8_t *symbols, float *freq1, float fstep,
int32_t *shift1, int32_t lagmin, int32_t lagmax, int32_t lagstep,
float *drift1, int32_t symfac, float *sync, int32_t mode) {
float fbest=0.0;
float f0=0.0,fp,ss;
int32_t lag;
static float fplast=-10000.0;
float i0[NSYM],q0[NSYM],
i1[NSYM],q1[NSYM],
i2[NSYM],q2[NSYM],
i3[NSYM],q3[NSYM];
float p0,p1,p2,p3,cmet,totp,syncmax,fac;
float c0[NSPERSYM],s0[NSPERSYM],
c1[NSPERSYM],s1[NSPERSYM],
c2[NSPERSYM],s2[NSPERSYM],
c3[NSPERSYM],s3[NSPERSYM];
float dphi0, cdphi0, sdphi0,
dphi1, cdphi1, sdphi1,
dphi2, cdphi2, sdphi2,
dphi3, cdphi3, sdphi3;
float fsum=0.0, f2sum=0.0, fsymb[NSYM];
int32_t best_shift = 0;
int32_t ifmin=0, ifmax=0;
syncmax=-1e30;
if( mode == 0 ) {
ifmin=0;
ifmax=0;
fstep=0.0;
f0=*freq1;
}
if( mode == 1 ) {
lagmin=*shift1;
lagmax=*shift1;
ifmin=-5;
ifmax=5;
f0=*freq1;
}
if( mode == 2 ) {
lagmin=*shift1;
lagmax=*shift1;
ifmin=0;
ifmax=0;
f0=*freq1;
}
for(int32_t ifreq=ifmin; ifreq<=ifmax; ifreq++) {
f0=*freq1+ifreq*fstep;
for(lag=lagmin; lag<=lagmax; lag=lag+lagstep) {
ss=0.0;
totp=0.0;
for (int32_t i=0; i<NSYM; i++) {
fp = f0 + ((float)*drift1/2.0)*((float)i-(float)NBITS)/(float)NBITS;
if( i==0 || (fp != fplast) ) { // only calculate sin/cos if necessary
dphi0=TWOPIDT*(fp-1.5*DF);
cdphi0=cosf(dphi0);
sdphi0=sinf(dphi0);
dphi1=TWOPIDT*(fp-0.5*DF);
cdphi1=cosf(dphi1);
sdphi1=sinf(dphi1);
dphi2=TWOPIDT*(fp+0.5*DF);
cdphi2=cosf(dphi2);
sdphi2=sinf(dphi2);
dphi3=TWOPIDT*(fp+1.5*DF);
cdphi3=cosf(dphi3);
sdphi3=sinf(dphi3);
c0[0]=1;
s0[0]=0;
c1[0]=1;
s1[0]=0;
c2[0]=1;
s2[0]=0;
c3[0]=1;
s3[0]=0;
for (int32_t j=1; j<NSPERSYM; j++) {
c0[j]=c0[j-1]*cdphi0 - s0[j-1]*sdphi0;
s0[j]=c0[j-1]*sdphi0 + s0[j-1]*cdphi0;
c1[j]=c1[j-1]*cdphi1 - s1[j-1]*sdphi1;
s1[j]=c1[j-1]*sdphi1 + s1[j-1]*cdphi1;
c2[j]=c2[j-1]*cdphi2 - s2[j-1]*sdphi2;
s2[j]=c2[j-1]*sdphi2 + s2[j-1]*cdphi2;
c3[j]=c3[j-1]*cdphi3 - s3[j-1]*sdphi3;
s3[j]=c3[j-1]*sdphi3 + s3[j-1]*cdphi3;
}
fplast = fp;
}
i0[i]=0.0;
q0[i]=0.0;
i1[i]=0.0;
q1[i]=0.0;
i2[i]=0.0;
q2[i]=0.0;
i3[i]=0.0;
q3[i]=0.0;
for (int32_t j=0; j<NSPERSYM; j++) {
int32_t k=lag+i*NSPERSYM+j;
if( (k>0) & (k<np) ) {
i0[i]=i0[i] + id[k]*c0[j] + qd[k]*s0[j];
q0[i]=q0[i] - id[k]*s0[j] + qd[k]*c0[j];
i1[i]=i1[i] + id[k]*c1[j] + qd[k]*s1[j];
q1[i]=q1[i] - id[k]*s1[j] + qd[k]*c1[j];
i2[i]=i2[i] + id[k]*c2[j] + qd[k]*s2[j];
q2[i]=q2[i] - id[k]*s2[j] + qd[k]*c2[j];
i3[i]=i3[i] + id[k]*c3[j] + qd[k]*s3[j];
q3[i]=q3[i] - id[k]*s3[j] + qd[k]*c3[j];
}
}
p0=i0[i]*i0[i] + q0[i]*q0[i];
p1=i1[i]*i1[i] + q1[i]*q1[i];
p2=i2[i]*i2[i] + q2[i]*q2[i];
p3=i3[i]*i3[i] + q3[i]*q3[i];
p0=sqrtf(p0);
p1=sqrtf(p1);
p2=sqrtf(p2);
p3=sqrtf(p3);
totp=totp+p0+p1+p2+p3;
cmet=(p1+p3)-(p0+p2);
ss=ss+cmet*(2*pr3[i]-1);
if( mode == 2) { //Compute soft symbols
if(pr3[i]) {
fsymb[i]=p3-p1;
} else {
fsymb[i]=p2-p0;
}
}
}
if( ss/totp > syncmax ) { //Save best parameters
syncmax=ss/totp;
best_shift=lag;
fbest=f0;
}
} // lag loop
} //freq loop
if( mode <=1 ) { //Send best params back to caller
*sync=syncmax;
*shift1=best_shift;
*freq1=fbest;
return;
}
if( mode == 2 ) {
*sync=syncmax;
for (int32_t i=0; i<NSYM; i++) { //Normalize the soft symbols
fsum=fsum+fsymb[i]/(float)NSYM;
f2sum=f2sum+fsymb[i]*fsymb[i]/(float)NSYM;
}
fac=sqrtf(f2sum-fsum*fsum);
for (int32_t i=0; i<NSYM; i++) {
fsymb[i]=symfac*fsymb[i]/fac;
if( fsymb[i] > 127) fsymb[i]=127.0;
if( fsymb[i] < -128 ) fsymb[i]=-128.0;
symbols[i]=fsymb[i] + 128;
}
return;
}
return;
}
/***************************************************************************
symbol-by-symbol signal subtraction
****************************************************************************/
void subtract_signal(float *id, float *qd, long np,
float f0, int32_t shift0, float drift0, uint8_t* channel_symbols) {
float i0,q0;
float c0[NSPERSYM],s0[NSPERSYM];
float dphi, cdphi, sdphi;
for (int32_t i=0; i<NSYM; i++) {
float fp = f0 + ((float)drift0/2.0)*((float)i-(float)NBITS)/(float)NBITS;
dphi=TWOPIDT*(fp+((float)channel_symbols[i]-1.5)*DF);
cdphi=cosf(dphi);
sdphi=sinf(dphi);
c0[0]=1;
s0[0]=0;
for (int32_t j=1; j<NSPERSYM; j++) {
c0[j]=c0[j-1]*cdphi - s0[j-1]*sdphi;
s0[j]=c0[j-1]*sdphi + s0[j-1]*cdphi;
}
i0=0.0;
q0=0.0;
for (int32_t j=0; j<NSPERSYM; j++) {
int32_t k=shift0+i*NSPERSYM+j;
if( (k>0) & (k<np) ) {
i0=i0 + id[k]*c0[j] + qd[k]*s0[j];
q0=q0 - id[k]*s0[j] + qd[k]*c0[j];
}
}
// subtract the signal here.
i0=i0/(float)NSPERSYM; //will be wrong for partial symbols at the edges...
q0=q0/(float)NSPERSYM;
for (int32_t j=0; j<NSPERSYM; j++) {
int32_t k=shift0+i*NSPERSYM+j;
if( (k>0) & (k<np) ) {
id[k]=id[k]- (i0*c0[j] - q0*s0[j]);
qd[k]=qd[k]- (q0*c0[j] + i0*s0[j]);
}
}
}
return;
}
/******************************************************************************
Fully coherent signal subtraction
*******************************************************************************/
void subtract_signal2(float *id, float *qd, long np,
float f0, int32_t shift0, float drift0, uint8_t* channel_symbols) {
float phi=0, dphi, cs;
float refi[NIQ]= {0}, refq[NIQ]= {0},
ci[NIQ]= {0}, cq[NIQ]= {0},
cfi[NIQ]= {0}, cfq[NIQ]= {0};
/******************************************************************************
Measured signal: s(t)=a(t)*exp( j*theta(t) )
Reference is: r(t) = exp( j*phi(t) )
Complex amplitude is estimated as: c(t)=LPF[s(t)*conjugate(r(t))]
so c(t) has phase angle theta-phi
Multiply r(t) by c(t) and subtract from s(t), i.e. s'(t)=s(t)-c(t)r(t)
*******************************************************************************/
// create reference wspr signal vector, centered on f0.
//
for (int32_t i=0; i<NSYM; i++) {
cs=(float)channel_symbols[i];
dphi=TWOPIDT * ( f0 +
((float)drift0/2.0)*((float)i-(float)NSYM/2.0)/((float)NSYM/2.0) +
(cs-1.5)*DF
);
for (int32_t j=0; j<NSPERSYM; j++ ) {
int32_t ii=NSPERSYM*i+j;
refi[ii]=refi[ii]+cosf(phi); //cannot precompute sin/cos because dphi is changing
refq[ii]=refq[ii]+sinf(phi);
phi=phi+dphi;
}
}
// s(t) * conjugate(r(t))
// beginning of first symbol in reference signal is at i=0
// beginning of first symbol in received data is at shift0.
// filter transient lasts nfilt samples
// leave nfilt zeros as a pad at the beginning of the unfiltered reference signal
for (int32_t i=0; i<NSYM*NSPERSYM; i++) {
int32_t k=shift0+i;
if( (k>0) & (k<np) ) {
ci[i+NFILT] = id[k]*refi[i] + qd[k]*refq[i];
cq[i+NFILT] = qd[k]*refi[i] - id[k]*refq[i];
}
}
//quick and dirty filter - may want to do better
float w[NFILT]= {0}, norm=0, partialsum[NFILT]= {0};
for (int32_t i=0; i<NFILT; i++) {
w[i]=sinf(M_PI*(float)i/(float)(NFILT-1));
norm=norm+w[i];
}
for (int32_t i=0; i<NFILT; i++) {
w[i]=w[i]/norm;
}
for (int32_t i=1; i<NFILT; i++) {
partialsum[i]=partialsum[i-1]+w[i];
}
// LPF
for (int32_t i=NFILT/2; i<NIQ-NFILT/2; i++) {
cfi[i]=0.0;
cfq[i]=0.0;
for (int32_t j=0; j<NFILT; j++) {
cfi[i]=cfi[i]+w[j]*ci[i-NFILT/2+j];
cfq[i]=cfq[i]+w[j]*cq[i-NFILT/2+j];
}
}
// subtract c(t)*r(t) here
// (ci+j*cq)(refi+j*refq)=(ci*refi-cq*refq)+j(ci*refq)+cq*refi)
// beginning of first symbol in reference signal is at i=NFILT
// beginning of first symbol in received data is at shift0.
for (int32_t i=0; i<NSIG; i++) {
if( i<NFILT/2 ) { // take care of the end effect (LPF step response) here
norm=partialsum[NFILT/2+i];
} else if( i>(NSIG-1-NFILT/2) ) {
norm=partialsum[NFILT/2+NSIG-1-i];
} else {
norm=1.0;
}
int32_t k=shift0+i;
int32_t j=i+NFILT;
if( (k>0) & (k<np) ) {
id[k]=id[k] - (cfi[j]*refi[i]-cfq[j]*refq[i])/norm;
qd[k]=qd[k] - (cfi[j]*refq[i]+cfq[j]*refi[i])/norm;
}
}
return;
}
int32_t wspr_decode(float *idat, float *qdat, uint32_t npoints,
struct decoder_options options, struct decoder_results *decodes,
int32_t *n_results) {
int32_t i,j,k;
uint8_t symbols[NBITS*2] = {0};
uint8_t decdata[(NBITS+7)/8] = {0};
int8_t message[12] = {0};
float freq0[200], freq1=0.0;
float drift0[200], drift1=0.0;
float sync0[200], sync1=0.0;
float snr0[200];
int32_t shift0[200], shift1=0;
char callsign[13] = {0};
char call_loc_pow[23] = {0};
char call[13] = {0};
char loc[7] = {0};
char pwr[3] = {0};
uint32_t metric, cycles, maxnp;
int32_t worth_a_try;
int32_t uniques = 0;
float fmin = -110.0;
float fmax = 110.0;
// Hash table
char hashtab[32768*13] = {0};
int32_t nh;
// Parameters used for performance-tuning:
uint32_t maxcycles=10000; // Fano timeout limit
double minsync1=0.10; // First sync limit
double minsync2=0.12; // Second sync limit
int32_t iifac=3; // Step size in final DT peakup
int32_t symfac=50; // Soft-symbol normalizing factor
int32_t maxdrift=4; // Maximum (+/-) drift
double minrms=52.0 * (symfac/64.0); // Final test for plausible decoding
int32_t delta=60; // Fano threshold step
// Results
float allfreqs[100];
char allcalls[100][13];
memset(allfreqs, 0, sizeof(float) * 100);
memset(allcalls, 0, sizeof(char) * 100 * 13);
// Setup metric table
int32_t mettab[2][256];
float bias=0.42;
for(i=0; i<256; i++) {
mettab[0][i]=round( 10*(metric_tables[2][i]-bias) );
mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) );
}
// FFT buffer
fftwf_complex *fftin, *fftout;
FILE *fp_fftw_wisdom_file, *fhash;
if ((fp_fftw_wisdom_file = fopen("wspr_wisdom.dat", "r"))) { //Open FFTW wisdom
fftwf_import_wisdom_from_file(fp_fftw_wisdom_file);
fclose(fp_fftw_wisdom_file);
}
// Do windowed ffts over 2 symbols, stepped by half symbols
int32_t nffts=4*floor(npoints/512)-1;
fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
PLAN3 = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE);
float ps[512][nffts];
float w[512];
for(i=0; i<512; i++) {
w[i]=sinf(0.006147931*i);
}
if( options.usehashtable ) {
char line[80], hcall[12];
if( (fhash=fopen("hashtable.txt","r+")) ) {
while (fgets(line, sizeof(line), fhash) != NULL) {
sscanf(line,"%d %s",&nh,hcall);
strcpy(hashtab+nh*13,hcall);
}
} else {
fhash=fopen("hashtable.txt","w+");
}
fclose(fhash);
}
// Main loop starts here
for (int32_t ipass=0; ipass<options.npasses; ipass++) {
if( ipass == 1 && uniques == 0 )
break;
if( ipass == 1 ) //otherwise we bog down on the second pass
options.quickmode = 1;
memset(ps,0.0, sizeof(float)*512*nffts);
for (i=0; i<nffts; i++) {
for(j=0; j<512; j++ ) {
k=i*128+j;
fftin[j][0]=idat[k] * w[j];
fftin[j][1]=qdat[k] * w[j];
}
fftwf_execute(PLAN3);
for (j=0; j<512; j++ ) {
k=j+256;
if( k>511 )
k=k-512;
ps[j][i]=fftout[k][0]*fftout[k][0]+fftout[k][1]*fftout[k][1];
}
}
// Compute average spectrum
float psavg[512]= {0};
for (i=0; i<nffts; i++) {
for (j=0; j<512; j++) {
psavg[j]=psavg[j]+ps[j][i];
}
}
// Smooth with 7-point window and limit spectrum to +/-150 Hz
int32_t window[7]= {1,1,1,1,1,1,1};
float smspec[411];
for (i=0; i<411; i++) {
smspec[i]=0.0;
for(j=-3; j<=3; j++) {
k=256-205+i+j;
smspec[i]=smspec[i]+window[j+3]*psavg[k];
}
}
// Sort spectrum values, then pick off noise level as a percentile
float tmpsort[411];
for (j=0; j<411; j++) {
tmpsort[j]=smspec[j];
}
qsort(tmpsort, 411, sizeof(float), floatcomp);
// Noise level of spectrum is estimated as 123/411= 30'th percentile
float noise_level = tmpsort[122];
/* Renormalize spectrum so that (large) peaks represent an estimate of snr.
* We know from experience that threshold snr is near -7dB in wspr bandwidth,
* corresponding to -7-26.3=-33.3dB in 2500 Hz bandwidth.
* The corresponding threshold is -42.3 dB in 2500 Hz bandwidth for WSPR-15. */
float min_snr = powf(10.0,-7.0/10.0); //this is min snr in wspr bw
float snr_scaling_factor=26.3;
for (j=0; j<411; j++) {
smspec[j]=smspec[j]/noise_level - 1.0;
if( smspec[j] < min_snr) smspec[j]=0.1;
continue;
}
// Find all local maxima in smoothed spectrum.
for (i=0; i<200; i++) {
freq0[i]=0.0;
snr0[i]=0.0;
drift0[i]=0.0;
shift0[i]=0;
sync0[i]=0.0;
}
int32_t npk=0;
for(j=1; j<410; j++) {
if((smspec[j]>smspec[j-1]) && (smspec[j]>smspec[j+1]) && (npk<200)) {
freq0[npk] = (j-205)*(DF/2.0);
snr0[npk] = 10.0*log10f(smspec[j]) - snr_scaling_factor;
npk++;
}
}
/* Compute corrected fmin, fmax, accounting for dial frequency error
float dialfreq_error = 0.0; // dialfreq_error is in units of Hz
fmin += dialfreq_error;
fmax += dialfreq_error;
*/
// Don't waste time on signals outside of the range [fmin,fmax].
i=0;
for( j=0; j<npk; j++) {
if( freq0[j] >= fmin && freq0[j] <= fmax ) {
freq0[i]=freq0[j];
snr0[i]=snr0[j];
i++;
}
}
npk=i;
// bubble sort on snr, bringing freq along for the ride
int32_t pass;
float tmp;
for (pass = 1; pass <= npk - 1; pass++) {
for (k = 0; k < npk - pass ; k++) {
if (snr0[k] < snr0[k+1]) {
tmp = snr0[k];
snr0[k] = snr0[k+1];
snr0[k+1] = tmp;
tmp = freq0[k];
freq0[k] = freq0[k+1];
freq0[k+1] = tmp;
}
}
}
/* Make coarse estimates of shift (DT), freq, and drift
* Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative
to nominal start time, which is 2 seconds into the file
* Calculates shift relative to the beginning of the file
* Negative shifts mean that signal started before start of file
* The program prints DT = shift-2 s
* Shifts that cause sync vector to fall off of either end of the data
vector are accommodated by "partial decoding", such that missing
symbols produce a soft-decision symbol value of 128
* The frequency drift model is linear, deviation of +/- drift/2 over the
span of 162 symbols, with deviation equal to 0 at the center of the
signal vector.
*/
int32_t idrift, ifr, if0, ifd, k0;
int32_t kindex;
float smax, ss, pow, p0, p1, p2, p3;
for(j=0; j<npk; j++) { //For each candidate...
smax = -1e30;
if0 = freq0[j]/(DF/2.0)+NSPERSYM;
for (ifr=if0-1; ifr<=if0+1; ifr++) { //Freq search
for( k0=-10; k0<22; k0++) { //Time search
for (idrift =- maxdrift; idrift<=maxdrift; idrift++) { //Drift search
ss = 0.0;
pow = 0.0;
for (k=0; k<NSYM; k++) { //Sum over symbols
ifd = ifr+((float)k-(float)NBITS)/(float)NBITS*( (float)idrift )/DF;
kindex = k0+2*k;
if( kindex < nffts ) {
p0 = ps[ifd-3][kindex];
p1 = ps[ifd-1][kindex];
p2 = ps[ifd+1][kindex];
p3 = ps[ifd+3][kindex];
p0 = sqrtf(p0);
p1 = sqrtf(p1);
p2 = sqrtf(p2);
p3 = sqrtf(p3);
ss = ss+(2*pr3[k]-1)*((p1+p3)-(p0+p2));
pow = pow+p0+p1+p2+p3;
sync1 = ss/pow;
}
}
if( sync1 > smax ) { //Save coarse parameters
smax = sync1;
shift0[j] = 128*(k0+1);
drift0[j] = idrift;
freq0[j] =( ifr-NSPERSYM)*(DF/2.0);
sync0[j] = sync1;
}
}
}
}
}
/*
Refine the estimates of freq, shift using sync as a metric.
Sync is calculated such that it is a float taking values in the range
[0.0,1.0].
Function sync_and_demodulate has three modes of operation
mode is the last argument:
0 = no frequency or drift search. find best time lag.
1 = no time lag or drift search. find best frequency.
2 = no frequency or time lag search. Calculate soft-decision
symbols using passed frequency and shift.
NB: best possibility for OpenMP may be here: several worker threads
could each work on one candidate at a time.
*/
for (j=0; j<npk; j++) {
memset(symbols, 0, sizeof(char)*NBITS*2);
memset(callsign, 0, sizeof(char)*13);
memset(call_loc_pow, 0, sizeof(char)*23);
memset(call, 0, sizeof(char)*13);
memset(loc, 0, sizeof(char)*7);
memset(pwr, 0, sizeof(char)*3);
freq1 = freq0[j];
drift1 = drift0[j];
shift1 = shift0[j];
sync1 = sync0[j];
// Fine search for best sync lag (mode 0)
float fstep = 0.0;
int32_t lagmin = shift1 - 144;
int32_t lagmax = shift1 + 144;
int32_t lagstep = 8;
if(options.quickmode)
lagstep = 16;
sync_and_demodulate(idat, qdat, npoints, symbols, &freq1, fstep, &shift1,
lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
// Fine search for frequency peak (mode 1)
fstep = 0.1;
sync_and_demodulate(idat, qdat, npoints, symbols, &freq1, fstep, &shift1,
lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
if( sync1 > minsync1 ) {
worth_a_try = 1;
} else {
worth_a_try = 0;
}
int32_t idt=0, ii=0, jiggered_shift;
float y,sq,rms;
int32_t not_decoded=1;
while ( worth_a_try && not_decoded && idt<=(128/iifac)) {
ii = (idt+1)/2;
if( idt%2 == 1 ) ii = -ii;
ii = iifac*ii;
jiggered_shift = shift1 + ii;
// Use mode 2 to get soft-decision symbols
sync_and_demodulate(idat, qdat, npoints, symbols, &freq1, fstep,
&jiggered_shift, lagmin, lagmax, lagstep, &drift1, symfac,
&sync1, 2);
sq=0.0;
for(i=0; i<NSYM; i++) {
y=(float)symbols[i] - 128.0;
sq += y*y;
}
rms=sqrtf(sq/(float)NSYM);
if((sync1 > minsync2) && (rms > minrms)) {
deinterleave(symbols);
not_decoded = fano(&metric, &cycles, &maxnp, decdata, symbols, NBITS,
mettab, delta, maxcycles);
}
idt++;
if( options.quickmode ) break;
}
if( worth_a_try && !not_decoded ) {
for(i=0; i<11; i++) {
if( decdata[i]>127 ) {
message[i] = decdata[i] - 256;
} else {
message[i] = decdata[i];
}
}
// Unpack the decoded message, update the hashtable, apply
// sanity checks on grid and power, and return
// call_loc_pow string and also callsign (for de-duping).
int32_t noprint = unpk_(message, hashtab, call_loc_pow, call, loc, pwr, callsign);
if( options.subtraction && (ipass == 0) && !noprint ) {
unsigned char channel_symbols[NSYM];
if( get_wspr_channel_symbols(call_loc_pow, hashtab, channel_symbols) ) {
subtract_signal2(idat, qdat, npoints, freq1, shift1, drift1, channel_symbols);
} else {
break;
}
}
// Remove dupes (same callsign and freq within 3 Hz)
int32_t dupe = 0;
for (i=0; i<uniques; i++) {
if(!strcmp(callsign,allcalls[i]) && (fabs(freq1-allfreqs[i]) <3.0))
dupe=1;
}
if( !dupe ) {
strcpy(allcalls[uniques],callsign);
allfreqs[uniques] = freq1;
uniques++;
double dialfreq = (double)options.freq / 1e6;
double freq_print = dialfreq+(1500+freq1) / 1e6;
float dt_print = shift1 * DT - 2.0;
decodes[uniques-1].sync = sync1;
decodes[uniques-1].snr = snr0[j];
decodes[uniques-1].dt = dt_print;
decodes[uniques-1].freq = freq_print;
decodes[uniques-1].drift = drift1;
decodes[uniques-1].cycles = cycles;
decodes[uniques-1].jitter = ii;
strcpy(decodes[uniques-1].message,call_loc_pow);
strcpy(decodes[uniques-1].call,call);
strcpy(decodes[uniques-1].loc,loc);
strcpy(decodes[uniques-1].pwr,pwr);
}
}
}
}
// sort the result
struct decoder_results temp;
for (j = 1; j <= uniques - 1; j++) {
for (k = 0; k < uniques - j ; k++) {
if (decodes[k].snr < decodes[k+1].snr) {
temp = decodes[k];
decodes[k]=decodes[k+1];;
decodes[k+1] = temp;
}
}
}
// Return number of spots to the calling fct
*n_results = uniques;
fftwf_free(fftin);
fftwf_free(fftout);
if ((fp_fftw_wisdom_file = fopen("wspr_wisdom.dat", "w"))) {
fftwf_export_wisdom_to_file(fp_fftw_wisdom_file);
fclose(fp_fftw_wisdom_file);
}
fftwf_destroy_plan(PLAN1);
fftwf_destroy_plan(PLAN2);
fftwf_destroy_plan(PLAN3);
if( options.usehashtable ) {
fhash=fopen("hashtable.txt","w");
for (i=0; i<32768; i++) {
if( strncmp(hashtab+i*13,"\0",1) != 0 ) {
fprintf(fhash,"%5d %s\n",i,hashtab+i*13);
}
}
fclose(fhash);
}
return 0;
}