rtlsdr-wsprd/wsprd/wsprd.c

859 wiersze
30 KiB
C

/*
This file is part of program wsprd, a detector/demodulator/decoder
for the Weak Signal Propagation Reporter (WSPR) mode.
File name: wsprd.c
Copyright 2001-2015, Joe Taylor, K1JT
Much of the present code is based on work by Steven Franke, K9AN,
which in turn was based on earlier work by K1JT.
Copyright 2014-2015, Steven Franke, K9AN
Minor modifications
Copyright 2016, Guenael Jouchet, VA2GKA
License: GNU GPL v3
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <fftw3.h>
#include "./wsprd.h"
#include "./fano.h"
#include "./nhash.h"
#include "./wsprd_utils.h"
#include "./wsprsim_utils.h"
#include "./metric_tables.h"
#define SIGNAL_LENGHT 120
#define SIGNAL_SAMPLE_RATE 375
#define SIGNAL_SAMPLES SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE
#define NBITS 81
#define NSYM 162
#define NSPERSYM 256
#define DF 375.0 / 256.0
#define DT 1.0 / 375.0
#define DF05 DF * 0.5
#define DF15 DF * 1.5
#define TWOPIDT 2.0 * M_PI * DT
/* Possible PATIENCE options: F
FTW_ESTIMATE,
FFTW_ESTIMATE_PATIENT,
FFTW_MEASURE,
FFTW_PATIENT,
FFTW_EXHAUSTIVE
*/
#define PATIENCE FFTW_ESTIMATE
fftwf_plan PLAN;
int32_t printdata = 0;
uint8_t pr3vector[NSYM] = {
1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
0, 0};
/* mode = 0: no frequency or drift search. find best time lag.
* 1: no time lag or drift search. find best frequency.
* 2: no frequency or time lag search. calculate soft-decision
* symbols using passed frequency and shift.
*/
void sync_and_demodulate(float *id,
float *qd,
long np,
unsigned char *symbols,
float *freq,
int ifmin,
int ifmax,
float fstep,
int *shift,
int lagmin,
int lagmax,
int lagstep,
float *drift,
int symfac,
float *sync,
int mode) {
float i0[NSYM], q0[NSYM],
i1[NSYM], q1[NSYM],
i2[NSYM], q2[NSYM],
i3[NSYM], q3[NSYM];
float c0[NSPERSYM], s0[NSPERSYM],
c1[NSPERSYM], s1[NSPERSYM],
c2[NSPERSYM], s2[NSPERSYM],
c3[NSPERSYM], s3[NSPERSYM];
float fsymb[NSYM];
float fbest = 0.0,
fsum = 0.0,
f2sum = 0.0;
int best_shift = 0;
static float fplast = -10000.0;
float syncmax = -1e30;
if (mode == 0) {
ifmin = 0;
ifmax = 0;
fstep = 0.0;
} else if (mode == 1) {
lagmin = *shift;
lagmax = *shift;
} else if (mode == 2) {
lagmin = *shift;
lagmax = *shift;
ifmin = 0;
ifmax = 0;
}
for (int ifreq = ifmin; ifreq <= ifmax; ifreq++) {
float f0 = *freq + ifreq * fstep;
for (int lag = lagmin; lag <= lagmax; lag = lag + lagstep) {
float ss = 0.0;
float totp = 0.0;
for (int i = 0; i < NSYM; i++) {
float fp = f0 + (*drift / 2.0) * ((float)i - (float)NBITS) / (float)NBITS;
if (i == 0 || (fp != fplast)) { // only calculate sin/cos if necessary
float dphi0 = TWOPIDT * (fp - DF15);
float cdphi0 = cosf(dphi0);
float sdphi0 = sinf(dphi0);
float dphi1 = TWOPIDT * (fp - DF05);
float cdphi1 = cosf(dphi1);
float sdphi1 = sinf(dphi1);
float dphi2 = TWOPIDT * (fp + DF05);
float cdphi2 = cosf(dphi2);
float sdphi2 = sinf(dphi2);
float dphi3 = TWOPIDT * (fp + DF15);
float cdphi3 = cosf(dphi3);
float sdphi3 = sinf(dphi3);
c0[0] = 1; s0[0] = 0;
c1[0] = 1; s1[0] = 0;
c2[0] = 1; s2[0] = 0;
c3[0] = 1; s3[0] = 0;
for (int j = 1; j < NSPERSYM; j++) {
c0[j] = c0[j - 1] * cdphi0 - s0[j - 1] * sdphi0;
s0[j] = c0[j - 1] * sdphi0 + s0[j - 1] * cdphi0;
c1[j] = c1[j - 1] * cdphi1 - s1[j - 1] * sdphi1;
s1[j] = c1[j - 1] * sdphi1 + s1[j - 1] * cdphi1;
c2[j] = c2[j - 1] * cdphi2 - s2[j - 1] * sdphi2;
s2[j] = c2[j - 1] * sdphi2 + s2[j - 1] * cdphi2;
c3[j] = c3[j - 1] * cdphi3 - s3[j - 1] * sdphi3;
s3[j] = c3[j - 1] * sdphi3 + s3[j - 1] * cdphi3;
}
fplast = fp;
}
i0[i] = 0.0; q0[i] = 0.0;
i1[i] = 0.0; q1[i] = 0.0;
i2[i] = 0.0; q2[i] = 0.0;
i3[i] = 0.0; q3[i] = 0.0;
for (int j = 0; j < NSPERSYM; j++) {
int k = lag + i * NSPERSYM + j;
if ((k > 0) && (k < np)) {
i0[i] = i0[i] + id[k] * c0[j] + qd[k] * s0[j];
q0[i] = q0[i] - id[k] * s0[j] + qd[k] * c0[j];
i1[i] = i1[i] + id[k] * c1[j] + qd[k] * s1[j];
q1[i] = q1[i] - id[k] * s1[j] + qd[k] * c1[j];
i2[i] = i2[i] + id[k] * c2[j] + qd[k] * s2[j];
q2[i] = q2[i] - id[k] * s2[j] + qd[k] * c2[j];
i3[i] = i3[i] + id[k] * c3[j] + qd[k] * s3[j];
q3[i] = q3[i] - id[k] * s3[j] + qd[k] * c3[j];
}
}
float p0 = sqrt(i0[i] * i0[i] + q0[i] * q0[i]);
float p1 = sqrt(i1[i] * i1[i] + q1[i] * q1[i]);
float p2 = sqrt(i2[i] * i2[i] + q2[i] * q2[i]);
float p3 = sqrt(i3[i] * i3[i] + q3[i] * q3[i]);
totp = totp + p0 + p1 + p2 + p3;
float cmet = (p1 + p3) - (p0 + p2);
ss = (pr3vector[i] == 1) ? ss + cmet : ss - cmet;
if (mode == 2) { // Compute soft symbols
if (pr3vector[i] == 1) {
fsymb[i] = p3 - p1;
} else {
fsymb[i] = p2 - p0;
}
}
}
ss = ss / totp;
if (ss > syncmax) { // Save best parameters
syncmax = ss;
best_shift = lag;
fbest = f0;
}
} // lag loop
} // freq loop
if (mode <= 1) { // Send best params back to caller
*sync = syncmax;
*shift = best_shift;
*freq = fbest;
return;
}
if (mode == 2) {
*sync = syncmax;
for (int i = 0; i < NSYM; i++) { // Normalize the soft symbols
fsum += fsymb[i] / NSYM;
f2sum += fsymb[i] * fsymb[i] / NSYM;
}
float fac = sqrt(f2sum - fsum * fsum);
for (int i = 0; i < NSYM; i++) {
fsymb[i] = symfac * fsymb[i] / fac;
if (fsymb[i] > 127) fsymb[i] = 127.0;
if (fsymb[i] < -128) fsymb[i] = -128.0;
symbols[i] = fsymb[i] + 128;
}
return;
}
return;
}
/* symbol-by-symbol signal subtraction */
void subtract_signal(float *id,
float *qd,
long np,
float f0,
int shift,
float drift,
unsigned char *channel_symbols) {
float c0[NSPERSYM], s0[NSPERSYM];
for (int i = 0; i < NSYM; i++) {
float fp = f0 + ((float)drift / 2.0) * ((float)i - (float)NBITS) / (float)NBITS;
float dphi = TWOPIDT * (fp + ((float)channel_symbols[i] - 1.5) * DF);
float cdphi = cosf(dphi);
float sdphi = sinf(dphi);
c0[0] = 1;
s0[0] = 0;
for (int j = 1; j < NSPERSYM; j++) {
c0[j] = c0[j - 1] * cdphi - s0[j - 1] * sdphi;
s0[j] = c0[j - 1] * sdphi + s0[j - 1] * cdphi;
}
float i0 = 0.0;
float q0 = 0.0;
for (int j = 0; j < NSPERSYM; j++) {
int k = shift + i * NSPERSYM + j;
if ((k > 0) & (k < np)) {
i0 = i0 + id[k] * c0[j] + qd[k] * s0[j];
q0 = q0 - id[k] * s0[j] + qd[k] * c0[j];
}
}
// subtract the signal here.
i0 = i0 / (float)NSPERSYM; // will be wrong for partial symbols at the edges...
q0 = q0 / (float)NSPERSYM;
for (int j = 0; j < NSPERSYM; j++) {
int k = shift + i * NSPERSYM + j;
if ((k > 0) & (k < np)) {
id[k] = id[k] - (i0 * c0[j] - q0 * s0[j]);
qd[k] = qd[k] - (q0 * c0[j] + i0 * s0[j]);
}
}
}
return;
}
/* Subtract the coherent component of a signal */
void subtract_signal2(float *id,
float *qd,
long np,
float f0,
int shift,
float drift,
unsigned char *channel_symbols) {
float phi = 0.0;
const int nfilt = 360; // nfilt must be even number.
float refi[SIGNAL_SAMPLES] = {0}, refq[SIGNAL_SAMPLES] = {0},
ci[SIGNAL_SAMPLES] = {0}, cq[SIGNAL_SAMPLES] = {0},
cfi[SIGNAL_SAMPLES] = {0}, cfq[SIGNAL_SAMPLES] = {0};
/******************************************************************************
Measured signal: s(t)=a(t)*exp( j*theta(t) )
Reference is: r(t) = exp( j*phi(t) )
Complex amplitude is estimated as: c(t)=LPF[s(t)*conjugate(r(t))]
so c(t) has phase angle theta-phi
Multiply r(t) by c(t) and subtract from s(t), i.e. s'(t)=s(t)-c(t)r(t)
*******************************************************************************/
/* create reference wspr signal vector, centered on f0. */
for (int i = 0; i < NSYM; i++) {
float cs = (float)channel_symbols[i];
float dphi = TWOPIDT * (f0 + (drift / 2.0) * ((float)i - (float)NSYM / 2.0) / ((float)NSYM / 2.0) + (cs - 1.5) * DF);
for (int j = 0; j < NSPERSYM; j++) {
int ii = NSPERSYM * i + j;
refi[ii] = cosf(phi); // cannot precompute sin/cos because dphi is changing
refq[ii] = sinf(phi);
phi = phi + dphi;
}
}
float w[nfilt], norm = 0, partialsum[nfilt];
/* lowpass filter and remove startup transient */
for (int i = 0; i < nfilt; i++) {
partialsum[i] = 0.0;
}
for (int i = 0; i < nfilt; i++) {
w[i] = sinf(M_PI * (float)i / (float)(nfilt - 1));
norm = norm + w[i];
}
for (int i = 0; i < nfilt; i++) {
w[i] = w[i] / norm;
}
for (int i = 1; i < nfilt; i++) {
partialsum[i] = partialsum[i - 1] + w[i];
}
// s(t) * conjugate(r(t))
// beginning of first symbol in reference signal is at i=0
// beginning of first symbol in received data is at shift value.
// filter transient lasts nfilt samples
// leave nfilt zeros as a pad at the beginning of the unfiltered reference signal
for (int i = 0; i < NSYM * NSPERSYM; i++) {
int k = shift + i;
if ((k > 0) && (k < np)) {
ci[i + nfilt] = id[k] * refi[i] + qd[k] * refq[i];
cq[i + nfilt] = qd[k] * refi[i] - id[k] * refq[i];
}
}
// LPF
for (int i = nfilt / 2; i < SIGNAL_SAMPLES - nfilt / 2; i++) {
cfi[i] = 0.0;
cfq[i] = 0.0;
for (int j = 0; j < nfilt; j++) {
cfi[i] = cfi[i] + w[j] * ci[i - nfilt / 2 + j];
cfq[i] = cfq[i] + w[j] * cq[i - nfilt / 2 + j];
}
}
// subtract c(t)*r(t) here
// (ci+j*cq)(refi+j*refq)=(ci*refi-cq*refq)+j(ci*refq+cq*refi)
// beginning of first symbol in reference signal is at i=nfilt
// beginning of first symbol in received data is at shift value.
for (int i = 0; i < NSYM * NSPERSYM; i++) {
if (i < nfilt / 2) { // take care of the end effect (LPF step response) here
norm = partialsum[nfilt / 2 + i];
} else if (i > (NSYM * NSPERSYM - 1 - nfilt / 2)) {
norm = partialsum[nfilt / 2 + NSYM * NSPERSYM - 1 - i];
} else {
norm = 1.0;
}
int k = shift + i;
int j = i + nfilt;
if ((k > 0) && (k < np)) {
id[k] = id[k] - (cfi[j] * refi[i] - cfq[j] * refq[i]) / norm;
qd[k] = qd[k] - (cfi[j] * refq[i] + cfq[j] * refi[i]) / norm;
}
}
return;
}
int wspr_decode(float *idat,
float *qdat,
int samples,
struct decoder_options options,
struct decoder_results *decodes,
int *n_results) {
/* Parameters used for performance-tuning */
float minsync1 = 0.10; // First sync limit
float minsync2 = 0.12; // Second sync limit
int iifac = 3; // Step size in final DT peakup
int symfac = 50; // Soft-symbol normalizing factor
int maxdrift = 4; // Maximum (+/-) drift
float minrms = 52.0 * (symfac / 64.0); // Final test for plausible decoding
int delta = 60; // Fano threshold step
int maxcycles = 10000; // Fano timeout limit
float fmin = -110.0;
float fmax = 110.0;
/* Search live parameters */
float fstep;
int lagmin;
int lagmax;
int lagstep;
int ifmin;
int ifmax;
/* Decoder flags */
int worth_a_try;
int uniques = 0;
/* CPU usage stats */
uint32_t metric, cycles, maxnp;
/* Candidates properties */
struct cand candidates[200];
/* Decoded candidate */
uint8_t symbols[NBITS * 2] = {0};
uint8_t decdata[(NBITS + 7) / 8] = {0};
int8_t message[12] = {0};
/* Results */
char callsign[13] = {0};
char call_loc_pow[23] = {0};
char call[13] = {0};
char loc[7] = {0};
char pwr[3] = {0};
float allfreqs[100] = {0};
char allcalls[100][13] = {0};
/* Setup metric table */
int32_t mettab[2][256];
float bias = 0.45;
for (int i = 0; i < 256; i++) {
mettab[0][i] = roundf(10.0 * (metric_tables[2][i] - bias));
mettab[1][i] = roundf(10.0 * (metric_tables[2][255 - i] - bias));
}
/* Setup/Load hash tables */
FILE *fhash;
int nh;
char hashtab[32768 * 13] = {0};
char loctab[32768 * 5] = {0};
if (options.usehashtable) {
char line[80], hcall[12], hgrid[5];;
if ((fhash = fopen("hashtable.txt", "r+"))) {
while (fgets(line, sizeof(line), fhash) != NULL) {
hgrid[0] = '\0';
sscanf(line, "%d %s %s", &nh, hcall, hgrid);
strcpy(hashtab + nh * 13, hcall);
if (strlen(hgrid) > 0) strcpy(loctab + nh * 5, hgrid);
}
fclose(fhash);
}
}
/* FFT buffer (512 bins) */
fftwf_complex *fftin, *fftout;
fftin = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * 512);
fftout = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * 512);
PLAN = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE);
/* Recover FFTW optimization settings */
FILE *fp_fftw_wisdom_file;
if ((fp_fftw_wisdom_file = fopen("fftw_wisdom.dat", "r"))) { // Open FFTW wisdom
fftwf_import_wisdom_from_file(fp_fftw_wisdom_file);
fclose(fp_fftw_wisdom_file);
}
/* Hann function */
float hann[512];
for (int i = 0; i < 512; i++) {
hann[i] = sinf(0.006147931 * i);
}
/* FFT output alloc */
const int blocks = 4 * floor(samples / 512) - 1;
float ps[512][blocks];
memset(ps, 0.0, sizeof(float) * 512 * blocks);
/* Main loop starts here */
for (int ipass = 0; ipass < options.npasses; ipass++) {
if (ipass == 1 && uniques == 0)
break;
if (ipass < 2) {
maxdrift = 4;
minsync2 = 0.12;
}
if (ipass == 2) {
maxdrift = 0; // no drift for smaller frequency estimator variance
minsync2 = 0.10;
}
/* Compute FFT
* FFT over 2 symbols, stepped by half symbols
*/
for (int i = 0; i < blocks; i++) {
/* Load samples */
for (int j = 0; j < 512; j++) {
int k = i * 128 + j;
fftin[j][0] = idat[k] * hann[j];
fftin[j][1] = qdat[k] * hann[j];
}
fftwf_execute(PLAN);
/* Recover frequencies */
for (int j = 0; j < 512; j++) {
int k = j + 256;
if (k > 511)
k = k - 512;
ps[j][i] = fftout[k][0] * fftout[k][0] + fftout[k][1] * fftout[k][1];
}
}
// Compute average spectrum
float psavg[512] = {0};
for (int i = 0; i < blocks; i++) {
for (int j = 0; j < 512; j++) {
psavg[j] += ps[j][i];
}
}
// Already restricted by previous FIR
// Smooth with 7-point window and limit spectrum to +/-150 Hz
int32_t window[7] = {1, 1, 1, 1, 1, 1, 1};
float smspec[411];
for (int i = 0; i < 411; i++) {
smspec[i] = 0.0;
for (int j = -3; j <= 3; j++) {
int k = 256 - 205 + i + j;
smspec[i] += window[j + 3] * psavg[k];
}
}
// Sort spectrum values, then pick off noise level as a percentile
float tmpsort[411];
for (int j = 0; j < 411; j++) {
tmpsort[j] = smspec[j];
}
qsort(tmpsort, 411, sizeof(float), floatcomp);
// Noise level of spectrum is estimated as 123/411= 30'th percentile
float noise_level = tmpsort[122];
/* Renormalize spectrum so that (large) peaks represent an estimate of snr.
* We know from experience that threshold snr is near -7dB in wspr bandwidth,
* corresponding to -7-26.3=-33.3dB in 2500 Hz bandwidth.
* The corresponding threshold is -42.3 dB in 2500 Hz bandwidth for WSPR-15. */
float min_snr = powf(10.0, -8.0 / 10.0); // this is min snr in wspr bw
float snr_scaling_factor = 26.3;
for (int j = 0; j < 411; j++) {
smspec[j] = smspec[j] / noise_level - 1.0;
if (smspec[j] < min_snr) smspec[j] = 0.1 * min_snr;
continue;
}
// Find all local maxima in smoothed spectrum.
for (int i = 0; i < 200; i++) {
candidates[i].freq = 0.0;
candidates[i].snr = 0.0;
candidates[i].drift = 0.0;
candidates[i].shift = 0;
candidates[i].sync = 0.0;
}
int npk = 0;
unsigned char candidate;
for (int j = 1; j < 410; j++) {
candidate = (smspec[j] > smspec[j - 1]) &&
(smspec[j] > smspec[j + 1]) &&
(npk < 200);
if (candidate) {
candidates[npk].freq = (j - 205) * (DF / 2.0);
candidates[npk].snr = 10.0 * log10f(smspec[j]) - snr_scaling_factor;
npk++;
}
}
// Don't waste time on signals outside of the range [fmin,fmax].
int i = 0;
for (int j = 0; j < npk; j++) {
if (candidates[j].freq >= fmin && candidates[j].freq <= fmax) {
candidates[i] = candidates[j];
i++;
}
}
npk = i;
// bubble sort on snr, bringing freq along for the ride
struct cand tmp;
for (int pass = 1; pass <= npk - 1; pass++) {
for (int k = 0; k < npk - pass; k++) {
if (candidates[k].snr < candidates[k + 1].snr) {
tmp = candidates[k];
candidates[k] = candidates[k + 1];
candidates[k + 1] = tmp;
}
}
}
/* Make coarse estimates of shift (DT), freq, and drift
* Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative
to nominal start time, which is 2 seconds into the file
* Calculates shift relative to the beginning of the file
* Negative shifts mean that signal started before start of file
* The program prints DT = shift-2 s
* Shifts that cause sync vector to fall off of either end of the data
vector are accommodated by "partial decoding", such that missing
symbols produce a soft-decision symbol value of 128
* The frequency drift model is linear, deviation of +/- drift/2 over the
span of 162 symbols, with deviation equal to 0 at the center of the
signal vector.
*/
for (int j = 0; j < npk; j++) { // For each candidate...
float sync, sync_max = -1e30;
int if0 = candidates[j].freq / (DF / 2.0) + NSPERSYM;
for (int ifr = if0 - 1; ifr <= if0 + 1; ifr++) { // Freq search
for (int k0 = -10; k0 < 22; k0++) { // Time search
for (int idrift = -maxdrift; idrift <= maxdrift; idrift++) { // Drift search
float ss = 0.0;
float pow = 0.0;
for (int k = 0; k < NSYM; k++) { // Sum over symbols
int ifd = ifr + ((float)k - (float)NBITS) / (float)NBITS * ((float)idrift) / DF;
int kindex = k0 + 2 * k;
if (kindex < blocks) {
float p0 = sqrtf(ps[ifd - 3][kindex]);
float p1 = sqrtf(ps[ifd - 1][kindex]);
float p2 = sqrtf(ps[ifd + 1][kindex]);
float p3 = sqrtf(ps[ifd + 3][kindex]);
ss = ss + (2 * pr3vector[k] - 1) * ((p1 + p3) - (p0 + p2));
pow = pow + p0 + p1 + p2 + p3;
sync = ss / pow;
}
}
if (sync > sync_max) { // Save coarse parameters
sync_max = sync;
candidates[j].shift = 128 * (k0 + 1);
candidates[j].drift = idrift;
candidates[j].freq = (ifr - NSPERSYM) * (DF / 2.0);
candidates[j].sync = sync;
}
}
}
}
}
/*
Refine the estimates of freq, shift using sync as a metric.
Sync is calculated such that it is a float taking values in the range
[0.0,1.0].
Function sync_and_demodulate has three modes of operation
mode is the last argument:
0 = no frequency or drift search. find best time lag.
1 = no time lag or drift search. find best frequency.
2 = no frequency or time lag search. Calculate soft-decision
symbols using passed frequency and shift.
NB: best possibility for OpenMP may be here: several worker threads
could each work on one candidate at a time.
*/
for (int j = 0; j < npk; j++) {
memset(callsign, 0, sizeof(char) * 13);
memset(call_loc_pow, 0, sizeof(char) * 23);
memset(call, 0, sizeof(char) * 13);
memset(loc, 0, sizeof(char) * 7);
memset(pwr, 0, sizeof(char) * 3);
float freq = candidates[j].freq;
float drift = candidates[j].drift;
float sync = candidates[j].sync;
int shift = candidates[j].shift;
// Search for best sync lag (mode 0)
fstep = 0.0;
ifmin = 0;
ifmax = 0;
lagmin = shift - 128;
lagmax = shift + 128;
lagstep = 8;
if (options.quickmode)
lagstep = 16;
sync_and_demodulate(idat, qdat, samples, symbols, &freq, ifmin, ifmax, fstep, &shift,
lagmin, lagmax, lagstep, &drift, symfac, &sync, 0);
// Search for frequency peak (mode 1)
fstep = 0.1;
ifmin = -2;
ifmax = 2;
sync_and_demodulate(idat, qdat, samples, symbols, &freq, ifmin, ifmax, fstep, &shift,
lagmin, lagmax, lagstep, &drift, symfac, &sync, 1);
candidates[j].freq = freq;
candidates[j].shift = shift;
candidates[j].drift = drift;
candidates[j].sync = sync;
if (sync > minsync1) {
worth_a_try = 1;
} else {
worth_a_try = 0;
}
int idt = 0, ii = 0;
int not_decoded = 1;
while (worth_a_try && not_decoded && idt <= (128 / iifac)) {
ii = (idt + 1) / 2;
if (idt % 2 == 1) ii = -ii;
ii = iifac * ii;
int jiggered_shift = shift + ii;
// Use mode 2 to get soft-decision symbols
sync_and_demodulate(idat, qdat, samples, symbols, &freq, ifmin, ifmax, fstep,
&jiggered_shift, lagmin, lagmax, lagstep, &drift, symfac,
&sync, 2);
float sq = 0.0;
for (i = 0; i < NSYM; i++) {
float y = (float)symbols[i] - 128.0;
sq += y * y;
}
float rms = sqrtf(sq / (float)NSYM);
if ((sync > minsync2) && (rms > minrms)) {
deinterleave(symbols);
not_decoded = fano(&metric, &cycles, &maxnp, decdata, symbols, NBITS,
mettab, delta, maxcycles);
}
idt++;
if (options.quickmode)
break;
}
if (worth_a_try && !not_decoded) {
for (i = 0; i < 11; i++) {
if (decdata[i] > 127) {
message[i] = decdata[i] - 256;
} else {
message[i] = decdata[i];
}
}
// Unpack the decoded message, update the hashtable, apply
// sanity checks on grid and power, and return
// call_loc_pow string and also callsign (for de-duping).
int32_t noprint = unpk_(message, hashtab, loctab, call_loc_pow, call, loc, pwr, callsign);
if (options.subtraction && (ipass == 0) && !noprint) {
unsigned char channel_symbols[NSYM];
if (get_wspr_channel_symbols(call_loc_pow, hashtab, loctab, channel_symbols)) {
subtract_signal2(idat, qdat, samples, freq, shift, drift, channel_symbols);
} else {
break;
}
}
// Avoid this incorrect pattern
if (!strcmp(loc, "A000AA"))
break;
// Remove dupes (same callsign and freq within 3 Hz)
int32_t dupe = 0;
for (i = 0; i < uniques; i++) {
if (!strcmp(callsign, allcalls[i]) && (fabs(freq - allfreqs[i]) < 3.0))
dupe = 1;
}
if (!dupe) {
strcpy(allcalls[uniques], callsign);
allfreqs[uniques] = freq;
uniques++;
double dialfreq = (double)options.freq / 1e6;
double freq_print = dialfreq + (1500.0 + freq) / 1e6;
decodes[uniques - 1].sync = candidates[j].sync;
decodes[uniques - 1].snr = candidates[j].snr;
decodes[uniques - 1].dt = shift * DT - 2.0;
decodes[uniques - 1].freq = freq_print;
decodes[uniques - 1].drift = drift;
decodes[uniques - 1].cycles = cycles;
decodes[uniques - 1].jitter = ii;
strcpy(decodes[uniques - 1].message, call_loc_pow);
strcpy(decodes[uniques - 1].call, call);
strcpy(decodes[uniques - 1].loc, loc);
strcpy(decodes[uniques - 1].pwr, pwr);
}
}
}
}
/* Sort the result */
struct decoder_results temp;
for (int j = 1; j <= uniques - 1; j++) {
for (int k = 0; k < uniques - j; k++) {
if (decodes[k].snr < decodes[k + 1].snr) {
temp = decodes[k];
decodes[k] = decodes[k + 1];
decodes[k + 1] = temp;
}
}
}
/* Return number of spots to the calling fct */
*n_results = uniques;
fftwf_free(fftin);
fftwf_free(fftout);
if ((fp_fftw_wisdom_file = fopen("fftw_wisdom.dat", "w"))) {
fftwf_export_wisdom_to_file(fp_fftw_wisdom_file);
fclose(fp_fftw_wisdom_file);
}
fftwf_destroy_plan(PLAN);
if (options.usehashtable) {
fhash = fopen("hashtable.txt", "w");
for (int i = 0; i < 32768; i++) {
if (strncmp(hashtab + i * 13, "\0", 1) != 0) {
fprintf(fhash, "%5d %s %s\n", i, hashtab + i * 13, loctab + i * 5);
}
}
fclose(fhash);
}
return 0;
}