kopia lustrzana https://github.com/pimoroni/pimoroni-pico
				
				
				
			
		
			
				
	
	
		
			153 wiersze
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			153 wiersze
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
#include <cstdio>
 | 
						|
#include "pico/stdlib.h"
 | 
						|
 | 
						|
#include "motor2040.hpp"
 | 
						|
#include "button.hpp"
 | 
						|
#include "pid.hpp"
 | 
						|
 | 
						|
/*
 | 
						|
An example of how to move a motor smoothly between random positions,
 | 
						|
with the help of it's attached encoder and PID control.
 | 
						|
 | 
						|
Press "Boot" to exit the program.
 | 
						|
*/
 | 
						|
 | 
						|
using namespace motor;
 | 
						|
using namespace encoder;
 | 
						|
 | 
						|
// The pins of the motor being profiled
 | 
						|
const pin_pair MOTOR_PINS = motor2040::MOTOR_A;
 | 
						|
 | 
						|
// The pins of the encoder attached to the profiled motor
 | 
						|
const pin_pair ENCODER_PINS = motor2040::ENCODER_A;
 | 
						|
 | 
						|
// The gear ratio of the motor
 | 
						|
constexpr float GEAR_RATIO = 50.0f;
 | 
						|
 | 
						|
// The counts per revolution of the motor's output shaft
 | 
						|
constexpr float COUNTS_PER_REV = MMME_CPR * GEAR_RATIO;
 | 
						|
 | 
						|
// The direction to spin the motor in. NORMAL_DIR (0), REVERSED_DIR (1)
 | 
						|
const Direction DIRECTION = NORMAL_DIR;
 | 
						|
 | 
						|
// The scaling to apply to the motor's speed to match its real-world speed
 | 
						|
constexpr float SPEED_SCALE = 5.4f;
 | 
						|
 | 
						|
// How many times to update the motor per second
 | 
						|
const uint UPDATES = 100;
 | 
						|
constexpr float UPDATE_RATE = 1.0f / (float)UPDATES;
 | 
						|
 | 
						|
// The time to travel between each random value
 | 
						|
constexpr float TIME_FOR_EACH_MOVE = 1.0f;
 | 
						|
const uint UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES;
 | 
						|
 | 
						|
// How many of the updates should be printed (i.e. 2 would be every other update)
 | 
						|
const uint PRINT_DIVIDER = 4;
 | 
						|
 | 
						|
// Multipliers for the different printed values, so they appear nicely on the Thonny plotter
 | 
						|
constexpr float SPD_PRINT_SCALE = 20.0f;    // Driving Speed multipler
 | 
						|
 | 
						|
// How far from zero to move the motor, in degrees
 | 
						|
constexpr float POSITION_EXTENT = 180.0f;
 | 
						|
 | 
						|
// The interpolating mode between setpoints. STEP (0), LINEAR (1), COSINE (2)
 | 
						|
const uint INTERP_MODE = 2;
 | 
						|
 | 
						|
 | 
						|
// PID values
 | 
						|
constexpr float POS_KP = 0.14f;   // Position proportional (P) gain
 | 
						|
constexpr float POS_KI = 0.0f;    // Position integral (I) gain
 | 
						|
constexpr float POS_KD = 0.002f;  // Position derivative (D) gain
 | 
						|
 | 
						|
 | 
						|
// Create a motor and set its direction and speed scale
 | 
						|
Motor m = Motor(MOTOR_PINS, DIRECTION, SPEED_SCALE);
 | 
						|
 | 
						|
// Create an encoder and set its direction and counts per rev, using PIO 0 and State Machine 0
 | 
						|
Encoder enc = Encoder(pio0, 0, ENCODER_PINS, PIN_UNUSED, DIRECTION, COUNTS_PER_REV, true);
 | 
						|
 | 
						|
// Create the user button
 | 
						|
Button user_sw(motor2040::USER_SW);
 | 
						|
 | 
						|
// Create PID object for position control
 | 
						|
PID pos_pid = PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE);
 | 
						|
 | 
						|
 | 
						|
int main() {
 | 
						|
  stdio_init_all();
 | 
						|
 | 
						|
  // Initialise the motor and encoder
 | 
						|
  m.init();
 | 
						|
  enc.init();
 | 
						|
 | 
						|
  // Enable the motor
 | 
						|
  m.enable();
 | 
						|
 | 
						|
 | 
						|
  uint update = 0;
 | 
						|
  uint print_count = 0;
 | 
						|
 | 
						|
  // Set the initial value and create a random end value between the extents
 | 
						|
  float start_value = 0.0f;
 | 
						|
  float end_value = (((float)rand() / (float)RAND_MAX) * (POSITION_EXTENT * 2.0f)) - POSITION_EXTENT;
 | 
						|
 | 
						|
  // Continually move the motor until the user button is pressed
 | 
						|
  while(!user_sw.raw()) {
 | 
						|
 | 
						|
    // Capture the state of the encoder
 | 
						|
    Encoder::Capture capture = enc.capture();
 | 
						|
 | 
						|
    // Calculate how far along this movement to be
 | 
						|
    float percent_along = (float)update / (float)UPDATES_PER_MOVE;
 | 
						|
 | 
						|
    switch(INTERP_MODE) {
 | 
						|
    case 0:
 | 
						|
      // Move the motor instantly to the end value
 | 
						|
      pos_pid.setpoint = end_value;
 | 
						|
      break;
 | 
						|
 | 
						|
    case 2:
 | 
						|
      // Move the motor between values using cosine
 | 
						|
      pos_pid.setpoint = (((-cosf(percent_along * (float)M_PI) + 1.0) / 2.0) * (end_value - start_value)) + start_value;
 | 
						|
      break;
 | 
						|
 | 
						|
    case 1:
 | 
						|
    default:
 | 
						|
      // Move the motor linearly between values
 | 
						|
      pos_pid.setpoint = (percent_along * (end_value - start_value)) + start_value;
 | 
						|
    }
 | 
						|
 | 
						|
    // Calculate the velocity to move the motor closer to the position setpoint
 | 
						|
    float vel = pos_pid.calculate(capture.degrees(), capture.degrees_per_second());
 | 
						|
 | 
						|
    // Set the new motor driving speed
 | 
						|
    m.speed(vel);
 | 
						|
 | 
						|
    // Print out the current motor values and their setpoints, but only on every multiple
 | 
						|
    if(print_count == 0) {
 | 
						|
      printf("Pos = %f, ", capture.degrees());
 | 
						|
      printf("Pos SP = %f, ", pos_pid.setpoint);
 | 
						|
      printf("Speed = %f\n", m.speed() * SPD_PRINT_SCALE);
 | 
						|
    }
 | 
						|
 | 
						|
    // Increment the print count, and wrap it
 | 
						|
    print_count = (print_count + 1) % PRINT_DIVIDER;
 | 
						|
 | 
						|
    update++;   // Move along in time
 | 
						|
 | 
						|
    // Have we reached the end of this movement?
 | 
						|
    if(update >= UPDATES_PER_MOVE) {
 | 
						|
      update = 0;  // Reset the counter
 | 
						|
 | 
						|
      // Set the start as the last end and create a new random end value
 | 
						|
      start_value = end_value;
 | 
						|
      end_value = (((float)rand() / (float)RAND_MAX) * (POSITION_EXTENT * 2.0f)) - POSITION_EXTENT;
 | 
						|
    }
 | 
						|
 | 
						|
    sleep_ms(UPDATE_RATE * 1000.0f);
 | 
						|
  }
 | 
						|
 | 
						|
  // Disable the motor
 | 
						|
  m.disable();
 | 
						|
}
 |