pimoroni-pico/examples/motor2040/motor2040_quad_position_wav...

170 wiersze
4.8 KiB
C++

#include <cstdio>
#include "pico/stdlib.h"
#include "motor2040.hpp"
#include "button.hpp"
#include "pid.hpp"
/*
A demonstration of driving all four of Motor 2040's motor outputs between
positions, with the help of their attached encoders and PID control.
Press "Boot" to exit the program.
*/
using namespace plasma;
using namespace motor;
using namespace encoder;
// The gear ratio of the motor
constexpr float GEAR_RATIO = 50.0f;
// The counts per revolution of the motor's output shaft
constexpr float COUNTS_PER_REV = MMME_CPR * GEAR_RATIO;
// The scaling to apply to the motor's speed to match its real-world speed
float SPEED_SCALE = 5.4f;
// How many times to update the motor per second
const uint UPDATES = 100;
constexpr float UPDATE_RATE = 1.0f / (float)UPDATES;
// The time to travel between each random value
constexpr float TIME_FOR_EACH_MOVE = 2.0f;
const uint UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES;
// How many of the updates should be printed (i.e. 2 would be every other update)
const uint PRINT_DIVIDER = 4;
// The brightness of the RGB LED
constexpr float BRIGHTNESS = 0.4f;
// PID values
constexpr float POS_KP = 0.14f; // Position proportional (P) gain
constexpr float POS_KI = 0.0f; // Position integral (I) gain
constexpr float POS_KD = 0.002f; // Position derivative (D) gain
// Create an array of motor pointers
const pin_pair motor_pins[] = {motor2040::MOTOR_A, motor2040::MOTOR_B,
motor2040::MOTOR_C, motor2040::MOTOR_D};
const uint NUM_MOTORS = count_of(motor_pins);
Motor *motors[NUM_MOTORS];
// Create an array of encoder pointers
const pin_pair encoder_pins[] = {motor2040::ENCODER_A, motor2040::ENCODER_B,
motor2040::ENCODER_C, motor2040::ENCODER_D};
const char* ENCODER_NAMES[] = {"A", "B", "C", "D"};
const uint NUM_ENCODERS = count_of(encoder_pins);
Encoder *encoders[NUM_ENCODERS];
// Create the LED, using PIO 1 and State Machine 0
WS2812 led(motor2040::NUM_LEDS, pio1, 0, motor2040::LED_DATA);
// Create the user button
Button user_sw(motor2040::USER_SW);
// Create an array of PID pointers
PID pos_pids[NUM_MOTORS];
int main() {
stdio_init_all();
// Fill the arrays of motors, encoders, and pids, and initialise them
for(auto i = 0u; i < NUM_MOTORS; i++) {
motors[i] = new Motor(motor_pins[i], NORMAL_DIR, SPEED_SCALE);
motors[i]->init();
encoders[i] = new Encoder(pio0, i, encoder_pins[i], PIN_UNUSED, NORMAL_DIR, COUNTS_PER_REV, true);
encoders[i]->init();
pos_pids[i] = PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE);
}
// Reverse the direction of the B and D motors and encoders
motors[1]->direction(REVERSED_DIR);
motors[3]->direction(REVERSED_DIR);
encoders[1]->direction(REVERSED_DIR);
encoders[3]->direction(REVERSED_DIR);
// Start updating the LED
led.start();
// Enable all motors
for(auto i = 0u; i < NUM_MOTORS; i++) {
motors[i]->enable();
}
uint update = 0;
uint print_count = 0;
// Set the initial and end values
float start_value = 0.0f;
float end_value = 270.0f;
Encoder::Capture captures[NUM_MOTORS];
// Continually move the motor until the user button is pressed
while(!user_sw.raw()) {
// Capture the state of all the encoders
for(auto i = 0u; i < NUM_MOTORS; i++) {
captures[i] = encoders[i]->capture();
}
// Calculate how far along this movement to be
float percent_along = (float)update / (float)UPDATES_PER_MOVE;
for(auto i = 0u; i < NUM_MOTORS; i++) {
// Move the motor between values using cosine
pos_pids[i].setpoint = (((-cosf(percent_along * (float)M_PI) + 1.0) / 2.0) * (end_value - start_value)) + start_value;
// Calculate the velocity to move the motor closer to the position setpoint
float vel = pos_pids[i].calculate(captures[i].degrees(), captures[i].degrees_per_second());
// Set the new motor driving speed
motors[i]->speed(vel);
}
// Update the LED
led.set_hsv(0, percent_along, 1.0f, BRIGHTNESS);
// Print out the current motor values and their setpoints, but only on every multiple
if(print_count == 0) {
for(auto i = 0u; i < NUM_ENCODERS; i++) {
printf("%s = %f, ", ENCODER_NAMES[i], captures[i].degrees());
}
printf("\n");
}
// Increment the print count, and wrap it
print_count = (print_count + 1) % PRINT_DIVIDER;
update++; // Move along in time
// Have we reached the end of this movement?
if(update >= UPDATES_PER_MOVE) {
update = 0; // Reset the counter
// Swap the start and end values
float temp = start_value;
start_value = end_value;
end_value = temp;
}
sleep_ms(UPDATE_RATE * 1000.0f);
}
// Stop all the motors
for(auto m = 0u; m < NUM_MOTORS; m++) {
motors[m]->disable();
}
// Turn off the LED
led.clear();
// Sleep a short time so the clear takes effect
sleep_ms(100);
}