pimoroni-pico/drivers/hub75/hub75.cpp

266 wiersze
9.3 KiB
C++

#include <cstring>
#include <algorithm>
#include <cmath>
#include "hub75.hpp"
namespace pimoroni {
Hub75::Hub75(uint width, uint height, Pixel *buffer, PanelType panel_type, bool inverted_stb)
: width(width), height(height), panel_type(panel_type), inverted_stb(inverted_stb)
{
// Set up allllll the GPIO
gpio_init(pin_r0); gpio_set_function(pin_r0, GPIO_FUNC_SIO); gpio_set_dir(pin_r0, true); gpio_put(pin_r0, 0);
gpio_init(pin_g0); gpio_set_function(pin_g0, GPIO_FUNC_SIO); gpio_set_dir(pin_g0, true); gpio_put(pin_g0, 0);
gpio_init(pin_b0); gpio_set_function(pin_b0, GPIO_FUNC_SIO); gpio_set_dir(pin_b0, true); gpio_put(pin_b0, 0);
gpio_init(pin_r1); gpio_set_function(pin_r1, GPIO_FUNC_SIO); gpio_set_dir(pin_r1, true); gpio_put(pin_r1, 0);
gpio_init(pin_g1); gpio_set_function(pin_g1, GPIO_FUNC_SIO); gpio_set_dir(pin_g1, true); gpio_put(pin_g1, 0);
gpio_init(pin_b1); gpio_set_function(pin_b1, GPIO_FUNC_SIO); gpio_set_dir(pin_b1, true); gpio_put(pin_b1, 0);
gpio_init(pin_row_a); gpio_set_function(pin_row_a, GPIO_FUNC_SIO); gpio_set_dir(pin_row_a, true); gpio_put(pin_row_a, 0);
gpio_init(pin_row_b); gpio_set_function(pin_row_b, GPIO_FUNC_SIO); gpio_set_dir(pin_row_b, true); gpio_put(pin_row_b, 0);
gpio_init(pin_row_c); gpio_set_function(pin_row_c, GPIO_FUNC_SIO); gpio_set_dir(pin_row_c, true); gpio_put(pin_row_c, 0);
gpio_init(pin_row_d); gpio_set_function(pin_row_d, GPIO_FUNC_SIO); gpio_set_dir(pin_row_d, true); gpio_put(pin_row_d, 0);
gpio_init(pin_row_e); gpio_set_function(pin_row_e, GPIO_FUNC_SIO); gpio_set_dir(pin_row_e, true); gpio_put(pin_row_e, 0);
gpio_init(pin_clk); gpio_set_function(pin_clk, GPIO_FUNC_SIO); gpio_set_dir(pin_clk, true); gpio_put(pin_clk, !clk_polarity);
gpio_init(pin_stb); gpio_set_function(pin_stb, GPIO_FUNC_SIO); gpio_set_dir(pin_stb, true); gpio_put(pin_clk, !stb_polarity);
gpio_init(pin_oe); gpio_set_function(pin_oe, GPIO_FUNC_SIO); gpio_set_dir(pin_oe, true); gpio_put(pin_clk, !oe_polarity);
if (buffer == nullptr) {
back_buffer = new Pixel[width * height];
managed_buffer = true;
} else {
back_buffer = buffer;
managed_buffer = false;
}
if (brightness == 0) {
if (width >= 64) brightness = 6;
if (width >= 96) brightness = 3;
if (width >= 128) brightness = 2;
if (width >= 160) brightness = 1;
}
}
void Hub75::set_color(uint x, uint y, Pixel c) {
int offset = 0;
if(x >= width || y >= height) return;
if(y >= height / 2) {
y -= height / 2;
offset = (y * width + x) * 2;
offset += 1;
} else {
offset = (y * width + x) * 2;
}
back_buffer[offset] = c;
}
void Hub75::set_pixel(uint x, uint y, uint8_t r, uint8_t g, uint8_t b) {
set_color(x, y, Pixel(r, g, b));
}
void Hub75::FM6126A_write_register(uint16_t value, uint8_t position) {
gpio_put(pin_clk, !clk_polarity);
gpio_put(pin_stb, !stb_polarity);
uint8_t threshold = width - position;
for(auto i = 0u; i < width; i++) {
auto j = i % 16;
bool b = value & (1 << j);
gpio_put(pin_r0, b);
gpio_put(pin_g0, b);
gpio_put(pin_b0, b);
gpio_put(pin_r1, b);
gpio_put(pin_g1, b);
gpio_put(pin_b1, b);
// Assert strobe/latch if i > threshold
// This somehow indicates to the FM6126A which register we want to write :|
gpio_put(pin_stb, i > threshold);
gpio_put(pin_clk, clk_polarity);
sleep_us(10);
gpio_put(pin_clk, !clk_polarity);
}
}
void Hub75::FM6126A_setup() {
// Ridiculous register write nonsense for the FM6126A-based 64x64 matrix
FM6126A_write_register(0b1111111111111110, 12);
FM6126A_write_register(0b0000001000000000, 13);
}
void Hub75::start(irq_handler_t handler) {
if(handler) {
dma_channel = 0;
// Try as I might, I can't seem to coax MicroPython into leaving PIO in a known state upon soft reset
// check for claimed PIO and prepare a clean slate.
stop(handler);
if (panel_type == PANEL_FM6126A) {
FM6126A_setup();
}
// Claim the PIO so we can clean it upon soft restart
pio_sm_claim(pio, sm_data);
pio_sm_claim(pio, sm_row);
data_prog_offs = pio_add_program(pio, &hub75_data_rgb888_program);
if (inverted_stb) {
row_prog_offs = pio_add_program(pio, &hub75_row_inverted_program);
} else {
row_prog_offs = pio_add_program(pio, &hub75_row_program);
}
hub75_data_rgb888_program_init(pio, sm_data, data_prog_offs, DATA_BASE_PIN, pin_clk);
hub75_row_program_init(pio, sm_row, row_prog_offs, ROWSEL_BASE_PIN, ROWSEL_N_PINS, pin_stb);
// Prevent flicker in Python caused by the smaller dataset just blasting through the PIO too quickly
pio_sm_set_clkdiv(pio, sm_data, width <= 32 ? 2.0f : 1.0f);
dma_channel_claim(dma_channel);
dma_channel_config config = dma_channel_get_default_config(dma_channel);
channel_config_set_transfer_data_size(&config, DMA_SIZE_32);
channel_config_set_bswap(&config, false);
channel_config_set_dreq(&config, pio_get_dreq(pio, sm_data, true));
dma_channel_configure(dma_channel, &config, &pio->txf[sm_data], NULL, 0, false);
// Same handler for both DMA channels
irq_set_exclusive_handler(DMA_IRQ_0, handler);
irq_set_exclusive_handler(DMA_IRQ_1, handler);
dma_channel_set_irq0_enabled(dma_channel, true);
irq_set_enabled(pio_get_dreq(pio, sm_data, true), true);
irq_set_enabled(DMA_IRQ_0, true);
row = 0;
bit = 0;
hub75_data_rgb888_set_shift(pio, sm_data, data_prog_offs, bit);
dma_channel_set_trans_count(dma_channel, width * 2, false);
dma_channel_set_read_addr(dma_channel, &back_buffer, true);
}
}
void Hub75::stop(irq_handler_t handler) {
irq_set_enabled(DMA_IRQ_0, false);
irq_set_enabled(DMA_IRQ_1, false);
irq_set_enabled(pio_get_dreq(pio, sm_data, true), false);
if(dma_channel_is_claimed(dma_channel)) {
dma_channel_set_irq0_enabled(dma_channel, false);
irq_remove_handler(DMA_IRQ_0, handler);
//dma_channel_wait_for_finish_blocking(dma_channel);
dma_channel_abort(dma_channel);
dma_channel_acknowledge_irq0(dma_channel);
dma_channel_unclaim(dma_channel);
}
if(pio_sm_is_claimed(pio, sm_data)) {
pio_sm_set_enabled(pio, sm_data, false);
pio_sm_drain_tx_fifo(pio, sm_data);
pio_sm_unclaim(pio, sm_data);
}
if(pio_sm_is_claimed(pio, sm_row)) {
pio_sm_set_enabled(pio, sm_row, false);
pio_sm_drain_tx_fifo(pio, sm_row);
pio_sm_unclaim(pio, sm_row);
}
pio_clear_instruction_memory(pio);
// Make sure the GPIO is in a known good state
// since we don't know what the PIO might have done with it
gpio_put_masked(0b111111 << pin_r0, 0);
gpio_put_masked(0b11111 << pin_row_a, 0);
gpio_put(pin_clk, !clk_polarity);
gpio_put(pin_clk, !oe_polarity);
}
Hub75::~Hub75() {
if (managed_buffer) {
delete[] back_buffer;
}
}
void Hub75::clear() {
for(auto x = 0u; x < width; x++) {
for(auto y = 0u; y < height; y++) {
set_pixel(x, y, 0, 0, 0);
}
}
}
void Hub75::dma_complete() {
if(dma_channel_get_irq0_status(dma_channel)) {
dma_channel_acknowledge_irq0(dma_channel);
// Push out a dummy pixel for each row
pio_sm_put_blocking(pio, sm_data, 0);
pio_sm_put_blocking(pio, sm_data, 0);
// SM is finished when it stalls on empty TX FIFO
hub75_wait_tx_stall(pio, sm_data);
// Check that previous OEn pulse is finished, else things WILL get out of sequence
hub75_wait_tx_stall(pio, sm_row);
// Latch row data, pulse output enable for new row.
pio_sm_put_blocking(pio, sm_row, row | (brightness << 5 << bit));
row++;
if(row == height / 2) {
row = 0;
bit++;
if (bit == BIT_DEPTH) {
bit = 0;
}
hub75_data_rgb888_set_shift(pio, sm_data, data_prog_offs, bit);
}
dma_channel_set_trans_count(dma_channel, width * 2, false);
dma_channel_set_read_addr(dma_channel, &back_buffer[row * width * 2], true);
}
}
void Hub75::update(PicoGraphics *graphics) {
if(graphics->pen_type == PicoGraphics::PEN_RGB888) {
uint32_t *p = (uint32_t *)graphics->frame_buffer;
for(uint y = 0; y < height; y++) {
for(uint x = 0; x < width; x++) {
uint32_t col = *p;
uint8_t r = (col & 0xff0000) >> 16;
uint8_t g = (col & 0x00ff00) >> 8;
uint8_t b = (col & 0x0000ff) >> 0;
set_pixel(x, y, r, g, b);
p++;
}
}
}
else if(graphics->pen_type == PicoGraphics::PEN_RGB565) {
uint16_t *p = (uint16_t *)graphics->frame_buffer;
for(uint y = 0; y < height; y++) {
for(uint x = 0; x < width; x++) {
uint16_t col = __builtin_bswap16(*p);
uint8_t r = (col & 0b1111100000000000) >> 8;
uint8_t g = (col & 0b0000011111100000) >> 3;
uint8_t b = (col & 0b0000000000011111) << 3;
set_pixel(x, y, r, g, b);
p++;
}
}
}
}
}