pimoroni-pico/libraries/adcfft/adcfft.cpp

193 wiersze
7.3 KiB
C++

/**
* Hunter Adams (vha3@cornell.edu)
* Reproduced and modified with explicit permission
*
* Original code in action:
* https://www.youtube.com/watch?v=8aibPy4yzCk
*
*/
#include "adcfft.hpp"
#include <algorithm>
// Adapted from https://github.com/raspberrypi/pico-sdk/blob/master/src/host/pico_bit_ops/bit_ops.c
uint16_t __always_inline __revs(uint16_t v) {
v = ((v & 0x5555u) << 1u) | ((v >> 1u) & 0x5555u);
v = ((v & 0x3333u) << 2u) | ((v >> 2u) & 0x3333u);
v = ((v & 0x0f0fu) << 4u) | ((v >> 4u) & 0x0f0fu);
return ((v >> 8u) & 0x00ffu) | ((v & 0x00ffu) << 8u);
}
ADCFFT::~ADCFFT() {
dma_channel_abort(dma_channel);
dma_channel_unclaim(dma_channel);
adc_run(false);
}
int ADCFFT::get_scaled(unsigned int i, unsigned int scale) {
return fix15_to_int(multiply_fix15(fr[i], int_to_fix15(scale)));
}
void ADCFFT::init() {
// Populate Filter and Sine tables
for (auto ii = 0u; ii < SAMPLE_COUNT; ii++) {
// Full sine wave with period NUM_SAMPLES
// Wolfram Alpha: Plot[(sin(2 * pi * (x / 1.0))), {x, 0, 1}]
sine_table[ii] = float_to_fix15(0.5f * sin((M_PI * 2.0f) * ((float) ii) / (float)SAMPLE_COUNT));
// This is a crude approximation of a Lanczos window.
// Wolfram Alpha Comparison: Plot[0.5 * (1.0 - cos(2 * pi * (x / 1.0))), {x, 0, 1}], Plot[LanczosWindow[x - 0.5], {x, 0, 1}]
filter_window[ii] = float_to_fix15(0.5f * (1.0f - cos((M_PI * 2.0f) * ((float) ii) / ((float)SAMPLE_COUNT))));
}
// ADC Configuration
// Init GPIO for analogue use: hi-Z, no pulls, disable digital input buffer.
adc_gpio_init(adc_pin);
// Initialize the ADC harware
// (resets it, enables the clock, spins until the hardware is ready)
if (!(adc_hw->cs & ADC_CS_EN_BITS)) adc_init();
// Select analog mux input (0...3 are GPIO 26, 27, 28, 29; 4 is temp sensor)
adc_select_input(adc_channel);
// Setup the FIFO
adc_fifo_setup(
true, // Write each completed conversion to the sample FIFO
true, // Enable DMA data request (DREQ)
1, // DREQ (and IRQ) asserted when at least 1 sample present
false, // We won't see the ERR bit because of 8 bit reads; disable.
true // Shift each sample to 8 bits when pushing to FIFO
);
// Divisor of 0 -> full speed. Free-running capture with the divider is
// equivalent to pressing the ADC_CS_START_ONCE button once per `div + 1`
// cycles (div not necessarily an integer). Each conversion takes 96
// cycles, so in general you want a divider of 0 (hold down the button
// continuously) or > 95 (take samples less frequently than 96 cycle
// intervals). This is all timed by the 48 MHz ADC clock.
adc_set_clkdiv(48000000.0f / sample_rate);
// DMA Configuration
dma_channel_config dma_config = dma_channel_get_default_config(dma_channel);
// Reading from constant address, writing to incrementing byte addresses
channel_config_set_transfer_data_size(&dma_config, DMA_SIZE_8);
channel_config_set_read_increment(&dma_config, false);
channel_config_set_write_increment(&dma_config, true);
// Pace transfers based on availability of ADC samples
channel_config_set_dreq(&dma_config, DREQ_ADC);
dma_channel_configure(dma_channel,
&dma_config, // channel config
sample_array, // destination
&adc_hw->fifo, // source
SAMPLE_COUNT, // transfer count
true // start immediately
);
adc_run(true);
}
void ADCFFT::update() {
float max_freq = 0;
// Wait for NUM_SAMPLES samples to be gathered
// Measure wait time with timer
dma_channel_wait_for_finish_blocking(dma_channel);
// Copy/window elements into a fixed-point array
for (auto i = 0u; i < SAMPLE_COUNT; i++) {
fr[i] = multiply_fix15(int_to_fix15((int)sample_array[i]), filter_window[i]);
fi[i] = (fix15)0;
}
// Restart the sample channel, now that we have our copy of the samples
dma_channel_set_write_addr(dma_channel, sample_array, true);
// Compute the FFT
FFT();
// Find the magnitudes
for (auto i = 0u; i < (SAMPLE_COUNT / 2u); i++) {
// get the approx magnitude
fr[i] = abs(fr[i]); //>>9
fi[i] = abs(fi[i]);
// reuse fr to hold magnitude
fr[i] = std::max(fr[i], fi[i]) +
multiply_fix15(std::min(fr[i], fi[i]), float_to_fix15(0.4f));
// Keep track of maximum
if (fr[i] > max_freq && i >= 5u) {
max_freq = ADCFFT::fr[i];
max_freq_dex = i;
}
}
}
float ADCFFT::max_frequency() {
return max_freq_dex * (sample_rate / SAMPLE_COUNT);
}
void ADCFFT::FFT() {
// Bit Reversal Permutation
// Bit reversal code below originally based on that found here:
// https://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
// https://en.wikipedia.org/wiki/Bit-reversal_permutation
// Detail here: https://vanhunteradams.com/FFT/FFT.html#Single-point-transforms-(reordering)
//
// PH: Converted to stdlib functions and __revs so it doesn't hurt my eyes
for (auto m = 1u; m < SAMPLE_COUNT - 1u; m++) {
unsigned int mr = __revs(m) >> shift_amount;
// don't swap that which has already been swapped
if (mr <= m) continue;
// swap the bit-reveresed indices
std::swap(fr[m], fr[mr]);
std::swap(fi[m], fi[mr]);
}
// Danielson-Lanczos
// Adapted from code by:
// Tom Roberts 11/8/89 and Malcolm Slaney 12/15/94 malcolm@interval.com
// Detail here: https://vanhunteradams.com/FFT/FFT.html#Two-point-transforms
// Length of the FFT's being combined (starts at 1)
//
// PH: Moved variable declarations to first-use so types are visually explicit.
// PH: Removed div 2 on sine table values, have computed the sine table pre-divided.
unsigned int L = 1;
int k = log2_samples - 1;
// While the length of the FFT's being combined is less than the number of gathered samples
while (L < SAMPLE_COUNT) {
// Determine the length of the FFT which will result from combining two FFT's
int istep = L << 1;
// For each element in the FFT's that are being combined
for (auto m = 0u; m < L; ++m) {
// Lookup the trig values for that element
int j = m << k; // index into sine_table
fix15 wr = sine_table[j + SAMPLE_COUNT / 4];
fix15 wi = -sine_table[j];
// i gets the index of one of the FFT elements being combined
for (auto i = m; i < SAMPLE_COUNT; i += istep) {
// j gets the index of the FFT element being combined with i
int j = i + L;
// compute the trig terms (bottom half of the above matrix)
fix15 tr = multiply_fix15(wr, fr[j]) - multiply_fix15(wi, fi[j]);
fix15 ti = multiply_fix15(wr, fi[j]) + multiply_fix15(wi, fr[j]);
// divide ith index elements by two (top half of above matrix)
fix15 qr = fr[i] >> 1;
fix15 qi = fi[i] >> 1;
// compute the new values at each index
fr[j] = qr - tr;
fi[j] = qi - ti;
fr[i] = qr + tr;
fi[i] = qi + ti;
}
}
--k;
L = istep;
}
}