pimoroni-pico/drivers/ioexpander/ioexpander.cpp

887 wiersze
27 KiB
C++

#include <cstdio>
#include <cstdlib>
#include <math.h>
#include <map>
#include <vector>
#include "ioexpander.hpp"
namespace pimoroni {
enum reg {
CHIP_ID_L = 0xfa,
CHIP_ID_H = 0xfb,
VERSION = 0xfc,
// Rotary encoder
ENC_EN = 0x04,
// BIT_ENC_EN_1 = 0
// BIT_ENC_MICROSTEP_1 = 1
// BIT_ENC_EN_2 = 2
// BIT_ENC_MICROSTEP_2 = 3
// BIT_ENC_EN_3 = 4
// BIT_ENC_MICROSTEP_3 = 5
// BIT_ENC_EN_4 = 6
// BIT_ENC_MICROSTEP_4 = 7
ENC_1_CFG = 0x05,
ENC_1_COUNT = 0x06,
ENC_2_CFG = 0x07,
ENC_2_COUNT = 0x08,
ENC_3_CFG = 0x09,
ENC_3_COUNT = 0x0A,
ENC_4_CFG = 0x0B,
ENC_4_COUNT = 0x0C,
// Cap touch
CAPTOUCH_EN = 0x0D,
CAPTOUCH_CFG = 0x0E,
CAPTOUCH_0 = 0x0F, // First of 8 bytes from 15-22
// Switch counters
SWITCH_EN_P0 = 0x17,
SWITCH_EN_P1 = 0x18,
SWITCH_P00 = 0x19, // First of 8 bytes from 25-40
SWITCH_P10 = 0x21, // First of 8 bytes from 33-49
USER_FLASH = 0xD0,
FLASH_PAGE = 0xF0,
DEBUG = 0xF8,
P0 = 0x40, // protect_bits 2 # Bit addressing
SP = 0x41, // Read only
DPL = 0x42, // Read only
DPH = 0x43, // Read only
RCTRIM0 = 0x44, // Read only
RCTRIM1 = 0x45, // Read only
RWK = 0x46,
PCON = 0x47, // Read only
TCON = 0x48,
TMOD = 0x49,
TL0 = 0x4a,
TL1 = 0x4b,
TH0 = 0x4c,
TH1 = 0x4d,
CKCON = 0x4e,
WKCON = 0x4f, // Read only
P1 = 0x50, // protect_bits 3 6 # Bit addressing
SFRS = 0x51, // TA protected # Read only
CAPCON0 = 0x52,
CAPCON1 = 0x53,
CAPCON2 = 0x54,
CKDIV = 0x55,
CKSWT = 0x56, // TA protected # Read only
CKEN = 0x57, // TA protected # Read only
SCON = 0x58,
SBUF = 0x59,
SBUF_1 = 0x5a,
EIE = 0x5b, // Read only
EIE1 = 0x5c, // Read only
CHPCON = 0x5f, // TA protected # Read only
P2 = 0x60, // Bit addressing
AUXR1 = 0x62,
BODCON0 = 0x63, // TA protected
IAPTRG = 0x64, // TA protected # Read only
IAPUEN = 0x65, // TA protected # Read only
IAPAL = 0x66, // Read only
IAPAH = 0x67, // Read only
IE = 0x68, // Read only
SADDR = 0x69,
WDCON = 0x6a, // TA protected
BODCON1 = 0x6b, // TA protected
P3M1 = 0x6c,
P3S = 0xc0, // Page 1 # Reassigned from 0x6c to avoid collision
P3M2 = 0x6d,
P3SR = 0xc1, // Page 1 # Reassigned from 0x6d to avoid collision
IAPFD = 0x6e, // Read only
IAPCN = 0x6f, // Read only
P3 = 0x70, // Bit addressing
P0M1 = 0x71, // protect_bits 2
P0S = 0xc2, // Page 1 # Reassigned from 0x71 to avoid collision
P0M2 = 0x72, // protect_bits 2
P0SR = 0xc3, // Page 1 # Reassigned from 0x72 to avoid collision
P1M1 = 0x73, // protect_bits 3 6
P1S = 0xc4, // Page 1 # Reassigned from 0x73 to avoid collision
P1M2 = 0x74, // protect_bits 3 6
P1SR = 0xc5, // Page 1 # Reassigned from 0x74 to avoid collision
P2S = 0x75,
IPH = 0x77, // Read only
PWMINTC = 0xc6, // Page 1 # Read only # Reassigned from 0x77 to avoid collision
IP = 0x78, // Read only
SADEN = 0x79,
SADEN_1 = 0x7a,
SADDR_1 = 0x7b,
I2DAT = 0x7c, // Read only
I2STAT = 0x7d, // Read only
I2CLK = 0x7e, // Read only
I2TOC = 0x7f, // Read only
I2CON = 0x80, // Read only
I2ADDR = 0x81, // Read only
ADCRL = 0x82,
ADCRH = 0x83,
T3CON = 0x84,
PWM4H = 0xc7, // Page 1 # Reassigned from 0x84 to avoid collision
RL3 = 0x85,
PWM5H = 0xc8, // Page 1 # Reassigned from 0x85 to avoid collision
RH3 = 0x86,
PIOCON1 = 0xc9, // Page 1 # Reassigned from 0x86 to avoid collision
TA = 0x87, // Read only
T2CON = 0x88,
T2MOD = 0x89,
RCMP2L = 0x8a,
RCMP2H = 0x8b,
TL2 = 0x8c,
PWM4L = 0xca, // Page 1 # Reassigned from 0x8c to avoid collision
TH2 = 0x8d,
PWM5L = 0xcb, // Page 1 # Reassigned from 0x8d to avoid collision
ADCMPL = 0x8e,
ADCMPH = 0x8f,
PSW = 0x90, // Read only
PWMPH = 0x91,
PWM0H = 0x92,
PWM1H = 0x93,
PWM2H = 0x94,
PWM3H = 0x95,
PNP = 0x96,
FBD = 0x97,
PWMCON0 = 0x98,
PWMPL = 0x99,
PWM0L = 0x9a,
PWM1L = 0x9b,
PWM2L = 0x9c,
PWM3L = 0x9d,
PIOCON0 = 0x9e,
PWMCON1 = 0x9f,
ACC = 0xa0, // Read only
ADCCON1 = 0xa1,
ADCCON2 = 0xa2,
ADCDLY = 0xa3,
C0L = 0xa4,
C0H = 0xa5,
C1L = 0xa6,
C1H = 0xa7,
ADCCON0 = 0xa8,
PICON = 0xa9, // Read only
PINEN = 0xaa, // Read only
PIPEN = 0xab, // Read only
PIF = 0xac, // Read only
C2L = 0xad,
C2H = 0xae,
EIP = 0xaf, // Read only
B = 0xb0, // Read only
CAPCON3 = 0xb1,
CAPCON4 = 0xb2,
SPCR = 0xb3,
SPCR2 = 0xcc, // Page 1 # Reassigned from 0xb3 to avoid collision
SPSR = 0xb4,
SPDR = 0xb5,
AINDIDS = 0xb6,
EIPH = 0xb7, // Read only
SCON_1 = 0xb8,
PDTEN = 0xb9, // TA protected
PDTCNT = 0xba, // TA protected
PMEN = 0xbb,
PMD = 0xbc,
EIP1 = 0xbe, // Read only
EIPH1 = 0xbf, // Read only
INT = 0xf9,
INT_MASK_P0 = 0x00,
INT_MASK_P1 = 0x01,
INT_MASK_P3 = 0x03,
ADDR = 0xfd,
CTRL = 0xfe, // 0 = Sleep, 1 = Reset, 2 = Read Flash, 3 = Write Flash, 4 = Addr Unlock
};
enum int_mask {
TRIG = 0x1,
OUT = 0x2,
};
enum int_bit {
TRIGD = 0,
OUT_EN = 1,
PIN_SWAP = 2, // 0 = P1.3, 1 = P0.0
};
enum ctrl_mask {
SLEEP = 0x1,
RESET = 0x2,
FREAD = 0x4,
FWRITE = 0x8,
ADDRWR = 0x10,
};
static const uint8_t NUM_BIT_ADDRESSED_REGISTERS = 4;
static const uint8_t BIT_ADDRESSED_REGS[NUM_BIT_ADDRESSED_REGISTERS] = {reg::P0, reg::P1, reg::P2, reg::P3};
static const uint8_t ENC_CFG[4] = {reg::ENC_1_CFG, reg::ENC_2_CFG, reg::ENC_3_CFG, reg::ENC_4_CFG};
static const uint8_t ENC_COUNT[4] = {reg::ENC_1_COUNT, reg::ENC_2_COUNT, reg::ENC_3_COUNT, reg::ENC_4_COUNT};
const uint8_t IOExpander::Pin::PxM1[4] = {reg::P0M1, reg::P1M1, (uint8_t)-1, reg::P3M1};
const uint8_t IOExpander::Pin::PxM2[4] = {reg::P0M2, reg::P1M2, (uint8_t)-1, reg::P3M2};
const uint8_t IOExpander::Pin::Px[4] = {reg::P0, reg::P1, (uint8_t)-1, reg::P3};
const uint8_t IOExpander::Pin::PxS[4] = {reg::P0S, reg::P1S, (uint8_t)-1, reg::P3S};
const uint8_t IOExpander::Pin::MASK_P[4] = {reg::INT_MASK_P0, reg::INT_MASK_P1, (uint8_t)-1, reg::INT_MASK_P3};
const uint8_t IOExpander::Pin::PWML[6] = {reg::PWM0L, reg::PWM1L, reg::PWM2L, reg::PWM3L, reg::PWM4L, reg::PWM5L};
const uint8_t IOExpander::Pin::PWMH[6] = {reg::PWM0H, reg::PWM1H, reg::PWM2H, reg::PWM3H, reg::PWM4H, reg::PWM5H};
static const char* MODE_NAMES[3] = {"IO", "PWM", "ADC"};
static const char* GPIO_NAMES[4] = {"QB", "PP", "IN", "OD"};
static const char* STATE_NAMES[2] = {"LOW", "HIGH"};
IOExpander::Pin::Pin(uint8_t port, uint8_t pin) :
type(TYPE_IO), mode(0), port(port), pin(pin), adc_channel(0), pwm_channel(0),
reg_m1(PxM1[port]), reg_m2(PxM2[port]), reg_p(Px[port]), reg_ps(PxS[port]), reg_int_mask_p(MASK_P[port]),
reg_io_pwm(0), reg_pwml(0), reg_pwmh(0) {
}
IOExpander::Pin::Pin(uint8_t port, uint8_t pin, uint8_t pwm_channel, uint8_t reg_io_pwm) :
type(TYPE_PWM), mode(0), port(port), pin(pin), adc_channel(0), pwm_channel(pwm_channel),
reg_m1(PxM1[port]), reg_m2(PxM2[port]), reg_p(Px[port]), reg_ps(PxS[port]), reg_int_mask_p(MASK_P[port]),
reg_io_pwm(reg_io_pwm), reg_pwml(PWML[pwm_channel]), reg_pwmh(PWMH[pwm_channel]) {
}
IOExpander::Pin::Pin(uint8_t port, uint8_t pin, uint8_t adc_channel) :
type(TYPE_ADC), mode(0), port(port), pin(pin), adc_channel(adc_channel), pwm_channel(0),
reg_m1(PxM1[port]), reg_m2(PxM2[port]), reg_p(Px[port]), reg_ps(PxS[port]), reg_int_mask_p(MASK_P[port]),
reg_io_pwm(0), reg_pwml(0), reg_pwmh(0) {
}
IOExpander::Pin::Pin(uint8_t port, uint8_t pin, uint8_t adc_channel, uint8_t pwm_channel, uint8_t reg_io_pwm) :
type(TYPE_ADC_OR_PWM), mode(0), port(port), pin(pin), adc_channel(adc_channel), pwm_channel(pwm_channel),
reg_m1(PxM1[port]), reg_m2(PxM2[port]), reg_p(Px[port]), reg_ps(PxS[port]), reg_int_mask_p(MASK_P[port]),
reg_io_pwm(reg_io_pwm), reg_pwml(PWML[pwm_channel]), reg_pwmh(PWMH[pwm_channel]) {
}
IOExpander::Pin IOExpander::Pin::io(uint8_t port, uint8_t pin) {
return Pin(port, pin);
}
IOExpander::Pin IOExpander::Pin::pwm(uint8_t port, uint8_t pin, uint8_t channel, uint8_t reg_iopwm) {
return Pin(port, pin, channel, reg_iopwm);
}
IOExpander::Pin IOExpander::Pin::adc(uint8_t port, uint8_t pin, uint8_t channel) {
return Pin(port, pin, channel);
}
IOExpander::Pin IOExpander::Pin::adc_or_pwm(uint8_t port, uint8_t pin, uint8_t adc_channel, uint8_t pwm_channel, uint8_t reg_iopwm) {
return Pin(port, pin, adc_channel, pwm_channel, reg_iopwm);
}
bool IOExpander::Pin::mode_supported(uint8_t mode) {
bool supported = false;
if((type & TYPE_PWM) && (mode == PIN_MODE_PWM)) {
supported = true;
}
else if((type & TYPE_ADC) && (mode == PIN_MODE_ADC)) {
supported = true;
}
return supported;
}
IOExpander::Pin::IOType IOExpander::Pin::get_type() {
return type;
}
uint8_t IOExpander::Pin::get_mode() {
return mode;
}
void IOExpander::Pin::set_mode(uint8_t mode) {
this->mode = mode;
}
IOExpander::IOExpander(I2C *i2c, uint8_t address, uint interrupt, uint32_t timeout, bool debug) :
i2c(i2c),
address(address), interrupt(interrupt),
timeout(timeout), debug(debug), vref(3.3f),
encoder_offset{0,0,0,0},
encoder_last{0,0,0,0},
pins{ Pin::pwm(1, 5, 5, reg::PIOCON1),
Pin::pwm(1, 0, 2, reg::PIOCON0),
Pin::pwm(1, 2, 0, reg::PIOCON0),
Pin::pwm(1, 4, 1, reg::PIOCON1),
Pin::pwm(0, 0, 3, reg::PIOCON0),
Pin::pwm(0, 1, 4, reg::PIOCON0),
Pin::adc_or_pwm(1, 1, 7, 1, reg::PIOCON0),
Pin::adc_or_pwm(0, 3, 6, 5, reg::PIOCON0),
Pin::adc_or_pwm(0, 4, 5, 3, reg::PIOCON1),
Pin::adc(3, 0, 1),
Pin::adc(0, 6, 3),
Pin::adc_or_pwm(0, 5, 4, 2, reg::PIOCON1),
Pin::adc(0, 7, 2),
Pin::adc(1, 7, 0)}
{}
bool IOExpander::init(bool skipChipIdCheck, bool perform_reset) {
if(!skipChipIdCheck) {
uint16_t chip_id = get_chip_id();
if(chip_id != CHIP_ID) {
if(debug) {
printf("Chip ID invalid: %04x expected: %04x\n", chip_id, CHIP_ID);
}
return false;
}
}
// Reset the chip if requested, to put it into a known state
if(perform_reset && !reset()) {
return false;
}
if(interrupt != PIN_UNUSED) {
gpio_set_function(interrupt, GPIO_FUNC_SIO);
gpio_set_dir(interrupt, GPIO_IN);
gpio_pull_up(interrupt);
enable_interrupt_out(true);
}
return true;
}
uint8_t IOExpander::check_reset() {
uint8_t user_flash_reg = reg::USER_FLASH;
uint8_t value;
if(i2c_write_blocking(i2c->get_i2c(), address, &user_flash_reg, 1, false) == PICO_ERROR_GENERIC) {
return 0x00;
}
if(i2c_read_blocking(i2c->get_i2c(), address, (uint8_t *)&value, sizeof(uint8_t), false) == PICO_ERROR_GENERIC) {
return 0x00;
}
return value;
}
bool IOExpander::reset() {
uint32_t start_time = millis();
set_bits(reg::CTRL, ctrl_mask::RESET);
// Wait for a register to read its initialised value
while(check_reset() != 0x78) {
sleep_ms(1);
if(millis() - start_time >= RESET_TIMEOUT_MS) {
if(debug)
printf("Timed out waiting for Reset!");
return false;
}
}
return true;
}
i2c_inst_t* IOExpander::get_i2c() const {
return i2c->get_i2c();
}
int IOExpander::get_address() const {
return address;
}
int IOExpander::get_sda() const {
return i2c->get_sda();
}
int IOExpander::get_scl() const {
return i2c->get_scl();
}
int IOExpander::get_int() const {
return interrupt;
}
uint16_t IOExpander::get_chip_id() {
return ((uint16_t)i2c->reg_read_uint8(address, reg::CHIP_ID_H) << 8) | (uint16_t)i2c->reg_read_uint8(address, reg::CHIP_ID_L);
}
void IOExpander::set_address(uint8_t address) {
set_bit(reg::CTRL, 4);
i2c->reg_write_uint8(this->address, reg::ADDR, address);
this->address = address;
sleep_ms(250); //TODO Handle addr change IOError better
//wait_for_flash()
clr_bit(reg::CTRL, 4);
}
float IOExpander::get_adc_vref() {
return vref;
}
void IOExpander::set_adc_vref(float vref) {
this->vref = vref;
}
void IOExpander::enable_interrupt_out(bool pin_swap) {
set_bit(reg::INT, int_bit::OUT_EN);
change_bit(reg::INT, int_bit::PIN_SWAP, pin_swap);
}
void IOExpander::disable_interrupt_out() {
clr_bit(reg::INT, int_bit::OUT_EN);
}
bool IOExpander::get_interrupt_flag() {
if(interrupt != PIN_UNUSED)
return !gpio_get(interrupt);
else
return (get_bit(reg::INT, int_bit::TRIGD) != 0);
}
void IOExpander::clear_interrupt_flag() {
clr_bit(reg::INT, int_bit::TRIGD);
}
bool IOExpander::set_pin_interrupt(uint8_t pin, bool enabled) {
bool succeeded = false;
if(pin >= 1 && pin <= NUM_PINS) {
Pin& io_pin = pins[pin - 1];
change_bit(io_pin.reg_int_mask_p, io_pin.pin, enabled);
succeeded = true;
}
return succeeded;
}
void IOExpander::pwm_load(bool wait_for_load) {
// Load new period and duty registers into buffer
uint32_t start_time = millis();
set_bit(reg::PWMCON0, 6); // Set the "LOAD" bit of PWMCON0
if(wait_for_load) {
while(pwm_loading()) {
sleep_ms(1); // Wait for "LOAD" to complete
if(millis() - start_time >= timeout) {
if(debug)
printf("Timed out waiting for PWM load!");
return;
}
}
}
}
bool IOExpander::pwm_loading() {
return get_bit(reg::PWMCON0, 6);
}
void IOExpander::pwm_clear(bool wait_for_clear) {
uint32_t start_time = millis();
set_bit(reg::PWMCON0, 4); // Set the "CLRPWM" bit of PWMCON0
if(wait_for_clear) {
while(pwm_clearing()) {
sleep_ms(1); // Wait for "CLRPWM" to complete
if(millis() - start_time >= timeout) {
if(debug)
printf("Timed out waiting for PWM clear!");
return;
}
}
}
}
bool IOExpander::pwm_clearing() {
return get_bit(reg::PWMCON0, 4);
}
bool IOExpander::set_pwm_control(uint8_t divider) {
bool divider_good = true;
uint8_t pwmdiv2 = 0;
switch(divider) {
case 1: pwmdiv2 = 0b000; break;
case 2: pwmdiv2 = 0b001; break;
case 4: pwmdiv2 = 0b010; break;
case 8: pwmdiv2 = 0b011; break;
case 16: pwmdiv2 = 0b100; break;
case 32: pwmdiv2 = 0b101; break;
case 64: pwmdiv2 = 0b110; break;
case 128: pwmdiv2 = 0b111; break;
default:
if(debug) {
printf("ValueError: A clock divider of %d\n", divider);
}
divider_good = false;
break;
}
if(divider_good) {
//TODO: This currently sets GP, PWMTYP and FBINEN to 0
// It might be desirable to make these available to the user
// GP - Group mode enable (changes first three pairs of pAM to PWM01H and PWM01L)
// PWMTYP - PWM type select: 0 edge-aligned, 1 center-aligned
// FBINEN - Fault-break input enable
i2c->reg_write_uint8(address, reg::PWMCON1, pwmdiv2);
}
return divider_good;
}
void IOExpander::set_pwm_period(uint16_t value, bool load, bool wait_for_load) {
value &= 0xffff;
i2c->reg_write_uint8(address, reg::PWMPL, (uint8_t)(value & 0xff));
i2c->reg_write_uint8(address, reg::PWMPH, (uint8_t)(value >> 8));
if(load)
pwm_load(wait_for_load);
}
uint16_t IOExpander::set_pwm_frequency(float frequency, bool load, bool wait_for_load) {
uint32_t period = (uint32_t)(CLOCK_FREQ / frequency);
if (period / 128 > MAX_PERIOD) {
return MAX_PERIOD;
}
if (period < 2) {
return 2;
}
uint8_t divider = 1;
while ((period > MAX_PERIOD) && (divider < MAX_DIVIDER)) {
period >>= 1;
divider <<= 1;
}
period = MIN(period, MAX_PERIOD); // Should be unnecessary because of earlier raised errors, but kept in case
set_pwm_control(divider);
set_pwm_period((uint16_t)(period - 1), load, wait_for_load);
return (uint16_t)period;
}
uint8_t IOExpander::get_mode(uint8_t pin) {
if(pin < 1 || pin > NUM_PINS) {
printf("ValueError: Pin should be in range 1-14.\n");
return UINT8_MAX;
}
return pins[pin - 1].get_mode();
}
void IOExpander::set_mode(uint8_t pin, uint8_t mode, bool schmitt_trigger, bool invert) {
if(pin < 1 || pin > NUM_PINS) {
printf("ValueError: Pin should be in range 1-14.\n");
return;
}
Pin& io_pin = pins[pin - 1];
uint8_t gpio_mode = mode & 0b11;
uint8_t io_type = (mode >> 2) & 0b11;
uint8_t initial_state = mode >> 4;
if(io_pin.get_mode() == mode) {
if(debug) {
printf("Mode already is %s\n", MODE_NAMES[io_type]);
}
return;
}
if((io_type != Pin::TYPE_IO) && !io_pin.mode_supported(mode)) {
if(debug) {
printf("Pin %d does not support %s!\n", pin, MODE_NAMES[io_type]);
}
return;
}
io_pin.set_mode(mode);
if(debug) {
printf("Setting pin %d to mode %s %s, state: %s\n", pin, MODE_NAMES[io_type], GPIO_NAMES[gpio_mode], STATE_NAMES[initial_state]);
}
if(mode == PIN_MODE_PWM) {
set_bit(io_pin.reg_io_pwm, io_pin.pwm_channel);
change_bit(reg::PNP, io_pin.pwm_channel, invert);
set_bit(reg::PWMCON0, 7); // Set PWMRUN bit
}
else {
if(io_pin.get_type() & Pin::TYPE_PWM)
clr_bit(io_pin.reg_io_pwm, io_pin.pwm_channel);
}
uint8_t pm1 = i2c->reg_read_uint8(address, io_pin.reg_m1);
uint8_t pm2 = i2c->reg_read_uint8(address, io_pin.reg_m2);
// Clear the pm1 and pm2 bits
pm1 &= 255 - (1 << io_pin.pin);
pm2 &= 255 - (1 << io_pin.pin);
// Set the new pm1 and pm2 bits according to our gpio_mode
pm1 |= (gpio_mode >> 1) << io_pin.pin;
pm2 |= (gpio_mode & 0b1) << io_pin.pin;
i2c->reg_write_uint8(address, io_pin.reg_m1, pm1);
i2c->reg_write_uint8(address, io_pin.reg_m2, pm2);
// Set up Schmitt trigger mode on inputs
if(mode == PIN_MODE_PU || mode == PIN_MODE_IN)
change_bit(io_pin.reg_ps, io_pin.pin, schmitt_trigger);
// 5th bit of mode encodes default output pin state
i2c->reg_write_uint8(address, io_pin.reg_p, (initial_state << 3) | io_pin.pin);
}
int16_t IOExpander::input(uint8_t pin, uint32_t adc_timeout) {
if(pin < 1 || pin > NUM_PINS) {
if(debug)
printf("ValueError: Pin should be in range 1-14.\n");
return -1;
}
Pin& io_pin = pins[pin - 1];
if(io_pin.get_mode() == PIN_MODE_ADC) {
if(debug) {
printf("Reading ADC from pin %d\n", pin);
}
clr_bits(reg::ADCCON0, 0x0f);
set_bits(reg::ADCCON0, io_pin.adc_channel);
i2c->reg_write_uint8(address, reg::AINDIDS, 0);
set_bit(reg::AINDIDS, io_pin.adc_channel);
set_bit(reg::ADCCON1, 0);
clr_bit(reg::ADCCON0, 7); // ADCF - Clear the conversion complete flag
set_bit(reg::ADCCON0, 6); // ADCS - Set the ADC conversion start flag
// Wait for the ADCF conversion complete flag to be set
unsigned long start_time = millis();
while(!get_bit(reg::ADCCON0, 7)) {
sleep_ms(10);
if(millis() - start_time >= adc_timeout) {
if(debug)
printf("Timeout waiting for ADC conversion!");
return -1;
}
}
uint8_t hi = i2c->reg_read_uint8(address, reg::ADCRH);
uint8_t lo = i2c->reg_read_uint8(address, reg::ADCRL);
return (uint16_t)(hi << 4) | (uint16_t)lo;
}
else {
if(debug) {
printf("Reading IO from pin %d\n", pin);
}
uint8_t pv = get_bit(io_pin.reg_p, io_pin.pin);
return (pv) ? 1 : 0;
}
}
float IOExpander::input_as_voltage(uint8_t pin, uint32_t adc_timeout) {
if(pin < 1 || pin > NUM_PINS) {
if(debug)
printf("ValueError: Pin should be in range 1-14.\n");
return -1;
}
Pin& io_pin = pins[pin - 1];
if(io_pin.get_mode() == PIN_MODE_ADC) {
if(debug) {
printf("Reading ADC from pin %d\n", pin);
}
clr_bits(reg::ADCCON0, 0x0f);
set_bits(reg::ADCCON0, io_pin.adc_channel);
i2c->reg_write_uint8(address, reg::AINDIDS, 0);
set_bit(reg::AINDIDS, io_pin.adc_channel);
set_bit(reg::ADCCON1, 0);
clr_bit(reg::ADCCON0, 7); // ADCF - Clear the conversion complete flag
set_bit(reg::ADCCON0, 6); // ADCS - Set the ADC conversion start flag
// Wait for the ADCF conversion complete flag to be set
unsigned long start_time = millis();
while(!get_bit(reg::ADCCON0, 7)) {
sleep_ms(1);
if(millis() - start_time >= adc_timeout) {
if(debug)
printf("Timeout waiting for ADC conversion!\n");
return -1;
}
}
uint8_t hi = i2c->reg_read_uint8(address, reg::ADCRH);
uint8_t lo = i2c->reg_read_uint8(address, reg::ADCRL);
return ((float)((uint16_t)(hi << 4) | (uint16_t)lo) / 4095.0f) * vref;
}
else {
if(debug) {
printf("Reading IO from pin %d\n", pin);
}
uint8_t pv = get_bit(io_pin.reg_p, io_pin.pin);
return (pv) ? vref : 0.0f;
}
}
void IOExpander::output(uint8_t pin, uint16_t value, bool load, bool wait_for_load) {
if(pin < 1 || pin > NUM_PINS) {
printf("Pin should be in range 1-14.");
return;
}
Pin& io_pin = pins[pin - 1];
if(io_pin.get_mode() == PIN_MODE_PWM) {
if(debug) {
printf("Outputting PWM to pin: %d\n", pin);
}
i2c->reg_write_uint8(address, io_pin.reg_pwml, (uint8_t)(value & 0xff));
i2c->reg_write_uint8(address, io_pin.reg_pwmh, (uint8_t)(value >> 8));
if(load)
pwm_load(wait_for_load);
}
else {
if(value == LOW) {
if(debug) {
printf("Outputting LOW to pin: %d\n", pin);
}
clr_bit(io_pin.reg_p, io_pin.pin);
}
else if(value == HIGH) {
if(debug) {
printf("Outputting HIGH to pin: %d\n", pin);
}
set_bit(io_pin.reg_p, io_pin.pin);
}
}
}
void IOExpander::setup_rotary_encoder(uint8_t channel, uint8_t pin_a, uint8_t pin_b, uint8_t pin_c, bool count_microsteps) {
channel -= 1;
set_mode(pin_a, PIN_MODE_PU, true);
set_mode(pin_b, PIN_MODE_PU, true);
if(pin_c != 0) {
set_mode(pin_c, PIN_MODE_OD);
output(pin_c, 0);
}
i2c->reg_write_uint8(address, ENC_CFG[channel], pin_a | (pin_b << 4));
change_bit(reg::ENC_EN, (channel * 2) + 1, count_microsteps);
set_bit(reg::ENC_EN, channel * 2);
// Reset internal encoder count to zero
uint8_t reg = ENC_COUNT[channel];
i2c->reg_write_uint8(address, reg, 0x00);
}
int16_t IOExpander::read_rotary_encoder(uint8_t channel) {
channel -= 1;
int16_t last = encoder_last[channel];
uint8_t reg = ENC_COUNT[channel];
int16_t value = (int16_t)i2c->reg_read_uint8(address, reg);
if(value & 0b10000000)
value -= 256;
if(last > 64 && value < -64)
encoder_offset[channel] += 256;
if(last < -64 && value > 64)
encoder_offset[channel] -= 256;
encoder_last[channel] = value;
return encoder_offset[channel] + value;
}
void IOExpander::clear_rotary_encoder(uint8_t channel) {
channel -= 1;
encoder_last[channel] = 0;
uint8_t reg = ENC_COUNT[channel];
i2c->reg_write_uint8(address, reg, 0);
}
uint8_t IOExpander::get_bit(uint8_t reg, uint8_t bit) {
// Returns the specified bit (nth position from right) from a register
return i2c->reg_read_uint8(address, reg) & (1 << bit);
}
void IOExpander::set_bits(uint8_t reg, uint8_t bits) {
if(reg == reg::P0 || reg == reg::P1 || reg == reg::P2 || reg == reg::P3) {
for(uint8_t bit = 0; bit < 8; bit++) {
if(bits & (1 << bit)) {
i2c->reg_write_uint8(address, reg, 0b1000 | (bit & 0b111));
sleep_us(50);
}
}
return;
}
uint8_t value = i2c->reg_read_uint8(address, reg);
sleep_us(50);
i2c->reg_write_uint8(address, reg, value | bits);
}
void IOExpander::set_bit(uint8_t reg, uint8_t bit) {
// Set the specified bit (nth position from right) in a register.
set_bits(reg, (1 << bit));
}
void IOExpander::clr_bits(uint8_t reg, uint8_t bits) {
if(reg == reg::P0 || reg == reg::P1 || reg == reg::P2 || reg == reg::P3) {
for(uint8_t bit = 0; bit < 8; bit++) {
if(bits & (1 << bit)) {
i2c->reg_write_uint8(address, reg, 0b0000 | (bit & 0b111));
sleep_us(50);
}
}
return;
}
// Now deal with any other registers
uint8_t value = i2c->reg_read_uint8(address, reg);
sleep_us(50);
i2c->reg_write_uint8(address, reg, value & ~bits);
}
void IOExpander::clr_bit(uint8_t reg, uint8_t bit) {
// Clear the specified bit (nth position from right) in a register.
clr_bits(reg, (1 << bit));
}
void IOExpander::change_bit(uint8_t reg, uint8_t bit, bool state) {
// Toggle one register bit on/off.
if(state)
set_bit(reg, bit);
else
clr_bit(reg, bit);
}
void IOExpander::wait_for_flash(void) {
// Wait for the IOE to finish writing non-volatile memory.
unsigned long start_time = millis();
while(get_interrupt_flag()) {
if(millis() - start_time > timeout) {
printf("Timed out waiting for interrupt!\n");
return;
}
sleep_ms(1);
}
start_time = millis();
while(!get_interrupt_flag()) {
if(millis() - start_time > timeout) {
printf("Timed out waiting for interrupt!\n");
return;
}
sleep_ms(1);
}
}
uint32_t IOExpander::millis() {
return to_ms_since_boot(get_absolute_time());
}
}