kopia lustrzana https://github.com/pimoroni/pimoroni-pico
Merge pull request #592 from pimoroni/hel-festive-plasma-stick
Add festive Plasma Stick examplespatch-inkyframe7
commit
b1e8ed0864
|
@ -7,8 +7,12 @@
|
|||
- [Alternating Blinkies](#alternating-blinkies)
|
||||
- [Fire](#fire)
|
||||
- [Moon](#moon)
|
||||
- [Pulse](#pulse)
|
||||
- [Rainbows](#rainbows)
|
||||
- [Snow](#snow)
|
||||
- [Sparkles](#sparkles)
|
||||
- [Thermometer](#thermometer)
|
||||
- [Tree](#tree)
|
||||
- [Advanced Examples](#advanced-examples)
|
||||
- [CO2](#co2)
|
||||
- [Encoder](#encoder)
|
||||
|
@ -86,18 +90,42 @@ A simple 🔥 fire effect example 🤘 (warning, flashy).
|
|||
Spooky moon simulator - the LEDs will get brighter as midnight approaches!
|
||||
Needs to be run from Thonny to get the correct time.
|
||||
|
||||
### Pulse
|
||||
|
||||
[pulse.py](pulse.py)
|
||||
|
||||
Adjust the brightness or saturation of the LEDs using a sine wave.
|
||||
|
||||
### Rainbows
|
||||
|
||||
[rainbows.py](rainbows.py)
|
||||
|
||||
Some good old fashioned rainbows!
|
||||
|
||||
### Snow
|
||||
|
||||
[snow.py](snow.py)
|
||||
|
||||
Snow in a bottle!
|
||||
|
||||
### Sparkles
|
||||
|
||||
[sparkles.py](sparkles.py)
|
||||
|
||||
A festive, customisable sparkly effect.
|
||||
|
||||
### Thermometer
|
||||
|
||||
[thermometer_pico.py](thermometer_pico.py)
|
||||
|
||||
Reads the temperature from the Pico W's internal temperature sensor and changes the LED strip an appropriate colour.
|
||||
|
||||
### Tree
|
||||
|
||||
[tree.py](tree.py)
|
||||
|
||||
A Christmas tree simulator.
|
||||
|
||||
## Advanced Examples
|
||||
|
||||
These examples require additional hardware.
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
import plasma
|
||||
from plasma import plasma_stick
|
||||
from math import sin
|
||||
|
||||
"""
|
||||
Simple pulsing effect generated using a sine wave.
|
||||
"""
|
||||
|
||||
# Set how many LEDs you have
|
||||
NUM_LEDS = 50
|
||||
|
||||
# we're using HSV colours in this example - find more at https://colorpicker.me/
|
||||
# to convert a hue that's in degrees, divide it by 360
|
||||
COLOUR = 0.5
|
||||
|
||||
# set up the WS2812 / NeoPixel™ LEDs
|
||||
led_strip = plasma.WS2812(NUM_LEDS, 0, 0, plasma_stick.DAT, color_order=plasma.COLOR_ORDER_RGB)
|
||||
|
||||
# start updating the LED strip
|
||||
led_strip.start()
|
||||
|
||||
offset = 0
|
||||
|
||||
while True:
|
||||
# use a sine wave to set the brightness
|
||||
for i in range(NUM_LEDS):
|
||||
led_strip.set_hsv(i, COLOUR, 1.0, sin(offset))
|
||||
offset += 0.002
|
||||
|
||||
# # our sine wave goes between -1.0 and 1.0 - this means the LEDs will be off half the time
|
||||
# # this formula forces the brightness to be between 0.0 and 1.0
|
||||
# for i in range(NUM_LEDS):
|
||||
# led_strip.set_hsv(i, COLOUR, 1.0, (1 + sin(offset)) / 2)
|
||||
# offset += 0.002
|
||||
|
||||
# # adjust the saturation instead of the brightness/value
|
||||
# for i in range(NUM_LEDS):
|
||||
# led_strip.set_hsv(i, COLOUR, (1 + sin(offset)) / 2, 0.8)
|
||||
# offset += 0.002
|
|
@ -0,0 +1,62 @@
|
|||
import plasma
|
||||
from plasma import plasma_stick
|
||||
from random import uniform
|
||||
|
||||
"""
|
||||
Snow in a bottle! Always winter, never Christmas!
|
||||
Adjust SNOW_INTENSITY for more snow.
|
||||
"""
|
||||
|
||||
# Set how many LEDs you have
|
||||
NUM_LEDS = 50
|
||||
|
||||
# How much snow? [bigger number = more snowflakes]
|
||||
SNOW_INTENSITY = 0.0002
|
||||
|
||||
# Change RGB colours here (RGB colour picker: https://g.co/kgs/k2Egjk )
|
||||
BACKGROUND_COLOUR = [30, 50, 50] # dim blue
|
||||
SNOW_COLOUR = [240, 255, 255] # bluish white
|
||||
|
||||
# how quickly current colour changes to target colour [1 - 255]
|
||||
FADE_UP_SPEED = 255 # abrupt change for a snowflake
|
||||
FADE_DOWN_SPEED = 1
|
||||
|
||||
|
||||
def display_current():
|
||||
# paint our current LED colours to the strip
|
||||
for i in range(NUM_LEDS):
|
||||
led_strip.set_rgb(i, current_leds[i][0], current_leds[i][1], current_leds[i][2])
|
||||
|
||||
|
||||
def move_to_target():
|
||||
# nudge our current colours closer to the target colours
|
||||
for i in range(NUM_LEDS):
|
||||
for c in range(3): # 3 times, for R, G & B channels
|
||||
if current_leds[i][c] < target_leds[i][c]:
|
||||
current_leds[i][c] = min(current_leds[i][c] + FADE_UP_SPEED, target_leds[i][c]) # increase current, up to a maximum of target
|
||||
elif current_leds[i][c] > target_leds[i][c]:
|
||||
current_leds[i][c] = max(current_leds[i][c] - FADE_DOWN_SPEED, target_leds[i][c]) # reduce current, down to a minimum of target
|
||||
|
||||
|
||||
# Create a list of [r, g, b] values that will hold current LED colours, for display
|
||||
current_leds = [[0] * 3 for i in range(NUM_LEDS)]
|
||||
# Create a list of [r, g, b] values that will hold target LED colours, to move towards
|
||||
target_leds = [[0] * 3 for i in range(NUM_LEDS)]
|
||||
|
||||
# set up the WS2812 / NeoPixel™ LEDs
|
||||
led_strip = plasma.WS2812(NUM_LEDS, 0, 0, plasma_stick.DAT, color_order=plasma.COLOR_ORDER_RGB)
|
||||
|
||||
# start updating the LED strip
|
||||
led_strip.start()
|
||||
|
||||
while True:
|
||||
for i in range(NUM_LEDS):
|
||||
# randomly add snow
|
||||
if SNOW_INTENSITY > uniform(0, 1):
|
||||
# set a target to start a snowflake
|
||||
target_leds[i] = SNOW_COLOUR
|
||||
# slowly reset snowflake to background
|
||||
if current_leds[i] == target_leds[i]:
|
||||
target_leds[i] = BACKGROUND_COLOUR
|
||||
move_to_target() # nudge our current colours closer to the target colours
|
||||
display_current() # display current colours to strip
|
|
@ -0,0 +1,61 @@
|
|||
import plasma
|
||||
from plasma import plasma_stick
|
||||
from random import uniform
|
||||
|
||||
"""
|
||||
A festive sparkly effect. Play around with BACKGROUND_COLOUR and SPARKLE_COLOUR for different effects!
|
||||
"""
|
||||
|
||||
# Set how many LEDs you have
|
||||
NUM_LEDS = 50
|
||||
|
||||
# How many sparkles? [bigger number = more sparkles]
|
||||
SPARKLE_INTENSITY = 0.005
|
||||
|
||||
# Change your colours here! RGB colour picker: https://g.co/kgs/k2Egjk
|
||||
BACKGROUND_COLOUR = [50, 50, 0]
|
||||
SPARKLE_COLOUR = [255, 255, 0]
|
||||
|
||||
# how quickly current colour changes to target colour [1 - 255]
|
||||
FADE_UP_SPEED = 2
|
||||
FADE_DOWN_SPEED = 2
|
||||
|
||||
|
||||
def display_current():
|
||||
# paint our current LED colours to the strip
|
||||
for i in range(NUM_LEDS):
|
||||
led_strip.set_rgb(i, current_leds[i][0], current_leds[i][1], current_leds[i][2])
|
||||
|
||||
|
||||
def move_to_target():
|
||||
# nudge our current colours closer to the target colours
|
||||
for i in range(NUM_LEDS):
|
||||
for c in range(3): # 3 times, for R, G & B channels
|
||||
if current_leds[i][c] < target_leds[i][c]:
|
||||
current_leds[i][c] = min(current_leds[i][c] + FADE_UP_SPEED, target_leds[i][c]) # increase current, up to a maximum of target
|
||||
elif current_leds[i][c] > target_leds[i][c]:
|
||||
current_leds[i][c] = max(current_leds[i][c] - FADE_DOWN_SPEED, target_leds[i][c]) # reduce current, down to a minimum of target
|
||||
|
||||
|
||||
# Create a list of [r, g, b] values that will hold current LED colours, for display
|
||||
current_leds = [[0] * 3 for i in range(NUM_LEDS)]
|
||||
# Create a list of [r, g, b] values that will hold target LED colours, to move towards
|
||||
target_leds = [[0] * 3 for i in range(NUM_LEDS)]
|
||||
|
||||
# set up the WS2812 / NeoPixel™ LEDs
|
||||
led_strip = plasma.WS2812(NUM_LEDS, 0, 0, plasma_stick.DAT, color_order=plasma.COLOR_ORDER_RGB)
|
||||
|
||||
# start updating the LED strip
|
||||
led_strip.start()
|
||||
|
||||
while True:
|
||||
for i in range(NUM_LEDS):
|
||||
# randomly add sparkles
|
||||
if SPARKLE_INTENSITY > uniform(0, 1):
|
||||
# set a target to start a sparkle
|
||||
target_leds[i] = SPARKLE_COLOUR
|
||||
# for any sparkles that have achieved max sparkliness, reset them to background
|
||||
if current_leds[i] == target_leds[i]:
|
||||
target_leds[i] = BACKGROUND_COLOUR
|
||||
move_to_target() # nudge our current colours closer to the target colours
|
||||
display_current() # display current colours to strip
|
|
@ -0,0 +1,42 @@
|
|||
import time
|
||||
import plasma
|
||||
from plasma import plasma_stick
|
||||
from random import random, choice
|
||||
|
||||
"""
|
||||
A Christmas tree, with fairy lights!
|
||||
This will probably work better if your LEDs are in a vaguely tree shaped bottle :)
|
||||
"""
|
||||
|
||||
# Set how many LEDs you have
|
||||
NUM_LEDS = 50
|
||||
|
||||
# we're using HSV colours in this example - find more at https://colorpicker.me/
|
||||
# to convert a hue that's in degrees, divide it by 360
|
||||
TREE_COLOUR = [0.34, 1.0, 0.6]
|
||||
LIGHT_RATIO = 8 # every nth pixel is a light, the rest are tree.
|
||||
LIGHT_COLOURS = ((0.0, 1.0, 1.0), # red
|
||||
(0.1, 1.0, 1.0), # orange
|
||||
(0.6, 1.0, 1.0), # blue
|
||||
(0.85, 0.4, 1.0)) # pink
|
||||
LIGHT_CHANGE_CHANCE = 0.5 # change to 0.0 if you want static lights
|
||||
|
||||
# set up the WS2812 / NeoPixel™ LEDs
|
||||
led_strip = plasma.WS2812(NUM_LEDS, 0, 0, plasma_stick.DAT, color_order=plasma.COLOR_ORDER_RGB)
|
||||
|
||||
# start updating the LED strip
|
||||
led_strip.start()
|
||||
|
||||
# initial setup
|
||||
for i in range(NUM_LEDS):
|
||||
if i % LIGHT_RATIO == 0: # add an appropriate number of lights
|
||||
led_strip.set_hsv(i, *choice(LIGHT_COLOURS)) # choice randomly chooses from a list
|
||||
else: # GREEN
|
||||
led_strip.set_hsv(i, *TREE_COLOUR)
|
||||
|
||||
# animate
|
||||
while True:
|
||||
for i in range(NUM_LEDS):
|
||||
if (i % LIGHT_RATIO == 0) and (random() < LIGHT_CHANGE_CHANCE):
|
||||
led_strip.set_hsv(i, *choice(LIGHT_COLOURS))
|
||||
time.sleep(0.5)
|
|
@ -1,7 +1,7 @@
|
|||
# BME280 <!-- omit in toc -->
|
||||
|
||||
- [Getting Started](#getting-started)
|
||||
- [Reading Temperature, Pressure & Humidity](#reading-temperature-pressure--humidity)
|
||||
- [Reading Temperature, Pressure and Humidity](#reading-temperature-pressure-and-humidity)
|
||||
- [Configuring The Sensor](#configuring-the-sensor)
|
||||
- [Filter Settings](#filter-settings)
|
||||
- [Oversampling Settings](#oversampling-settings)
|
||||
|
@ -24,7 +24,7 @@ i2c = PimoroniI2C(**PINS_BREAKOUT_GARDEN)
|
|||
bme = BreakoutBME280(i2c)
|
||||
```
|
||||
|
||||
## Reading Temperature, Pressure & Humidity
|
||||
## Reading Temperature, Pressure and Humidity
|
||||
|
||||
The `read` method will return a tuple containing Temperature (degrees C), Pressure (Pa) and Humidity (RH %) values:
|
||||
|
||||
|
@ -37,7 +37,7 @@ temperature, pressure, humidity = bme.read()
|
|||
The `configure` method allows you to set up the oversampling, filtering and operation mode.
|
||||
|
||||
```python
|
||||
bmp.configure(filter, standby_time, os_pressure, os_humidity, os_temp, mode)
|
||||
bme.configure(filter, standby_time, os_pressure, os_humidity, os_temp, mode)
|
||||
```
|
||||
|
||||
The `breakout_bme280` module includes constants for these:
|
||||
|
|
|
@ -13,11 +13,11 @@ Pico Graphics replaces the individual drivers for displays- if you're been using
|
|||
- [I2C](#i2c)
|
||||
- [Function Reference](#function-reference)
|
||||
- [General](#general)
|
||||
- [Creating & Setting Pens](#creating--setting-pens)
|
||||
- [Creating and Setting Pens](#creating-and-setting-pens)
|
||||
- [RGB888, RGB565, RGB332, P8 and P4 modes](#rgb888-rgb565-rgb332-p8-and-p4-modes)
|
||||
- [Monochrome Modes](#monochrome-modes)
|
||||
- [Inky Frame](#inky-frame)
|
||||
- [Controlling The Backlight](#controlling-the-backlight)
|
||||
- [Controlling the Backlight](#controlling-the-backlight)
|
||||
- [Clipping](#clipping)
|
||||
- [Clear](#clear)
|
||||
- [Update](#update)
|
||||
|
@ -136,7 +136,7 @@ display = PicoGraphics(display=DISPLAY_I2C_OLED_128X128, bus=i2cbus)
|
|||
|
||||
### General
|
||||
|
||||
#### Creating & Setting Pens
|
||||
#### Creating and Setting Pens
|
||||
|
||||
##### RGB888, RGB565, RGB332, P8 and P4 modes
|
||||
|
||||
|
@ -198,7 +198,7 @@ These are:
|
|||
* `ORANGE` = 6
|
||||
* `TAUPE` = 7
|
||||
|
||||
#### Controlling The Backlight
|
||||
#### Controlling the Backlight
|
||||
|
||||
You can set the display backlight brightness between `0.0` and `1.0`:
|
||||
|
||||
|
@ -228,7 +228,7 @@ Clear the display to the current pen colour:
|
|||
display.clear()
|
||||
```
|
||||
|
||||
This is equivilent to:
|
||||
This is equivalent to:
|
||||
|
||||
```python
|
||||
w, h = display.get_bounds()
|
||||
|
@ -302,7 +302,6 @@ For example:
|
|||
display.set_font("bitmap8")
|
||||
display.text("Hello World", 0, 0, scale=2)
|
||||
```
|
||||
|
||||
Draws "Hello World" in a 16px tall, 2x scaled version of the `bitmap8` font.
|
||||
|
||||
Sometimes you might want to measure a text string for centering or alignment on screen, you can do this with:
|
||||
|
@ -319,6 +318,15 @@ Write a single character:
|
|||
display.character(char, x, y, scale)
|
||||
```
|
||||
|
||||
Specify `char` using a [decimal ASCII code](https://www.ascii-code.com/). Note not all characters are supported.
|
||||
|
||||
For example:
|
||||
```python
|
||||
display.set_font("bitmap8")
|
||||
display.character(38, 0, 0, scale=2)
|
||||
```
|
||||
Draws an ampersand in a 16px tall, 2x scaled version of the 'bitmap8' font.
|
||||
|
||||
### Basic Shapes
|
||||
|
||||
#### Line
|
||||
|
@ -329,7 +337,7 @@ To draw a line:
|
|||
display.line(x1, y1, x2, y2)
|
||||
```
|
||||
|
||||
The X1/Y1 and X2/Y2 coordinates describe the start and end of the line repsectively.
|
||||
The X1/Y1 and X2/Y2 coordinates describe the start and end of the line respectively.
|
||||
|
||||
#### Circle
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue