C++ and MP support and example for LTR559 breakout (#135)

* C driver and example for LTR559 breakout
* Micropython bindings and example for LTR559
pull/136/head
ZodiusInfuser 2021-05-06 09:48:17 +01:00 zatwierdzone przez GitHub
rodzic 7d3eb60b33
commit 3f379d04e7
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: 4AEE18F83AFDEB23
20 zmienionych plików z 1085 dodań i 0 usunięć

Wyświetl plik

@ -1,5 +1,6 @@
add_subdirectory(esp32spi)
add_subdirectory(ltp305)
add_subdirectory(ltr559)
add_subdirectory(st7789)
add_subdirectory(msa301)
add_subdirectory(rv3028)

Wyświetl plik

@ -0,0 +1 @@
include(ltr559.cmake)

Wyświetl plik

@ -0,0 +1,10 @@
set(DRIVER_NAME ltr559)
add_library(${DRIVER_NAME} INTERFACE)
target_sources(${DRIVER_NAME} INTERFACE
${CMAKE_CURRENT_LIST_DIR}/${DRIVER_NAME}.cpp)
target_include_directories(${DRIVER_NAME} INTERFACE ${CMAKE_CURRENT_LIST_DIR})
# Pull in pico libraries that we need
target_link_libraries(${DRIVER_NAME} INTERFACE pico_stdlib hardware_i2c)

Wyświetl plik

@ -0,0 +1,289 @@
#include "ltr559.hpp"
#include <algorithm>
namespace pimoroni {
lookup::lookup(std::initializer_list<uint16_t> values) : lut(values) {
}
uint8_t lookup::index(uint16_t value) {
auto it = find(lut.begin(), lut.end(), value);
if(it == lut.end())
return 0;
return it - lut.begin();
}
uint16_t lookup::value(uint8_t index) {
return lut[index];
}
pimoroni::lookup LTR559::lookup_led_current({5, 10, 20, 50, 100});
pimoroni::lookup LTR559::lookup_led_duty_cycle({25, 50, 75, 100});
pimoroni::lookup LTR559::lookup_led_pulse_freq({30, 40, 50, 60, 70, 80, 90, 100});
pimoroni::lookup LTR559::lookup_proximity_meas_rate({10, 50, 70, 100, 200, 500, 1000, 2000});
pimoroni::lookup LTR559::lookup_light_integration_time({100, 50, 200, 400, 150, 250, 300, 350});
pimoroni::lookup LTR559::lookup_light_repeat_rate({50, 100, 200, 500, 1000, 2000});
pimoroni::lookup LTR559::lookup_light_gain({1, 2, 4, 8, 0, 0, 48, 96});
bool LTR559::init() {
i2c_init(i2c, 400000);
gpio_set_function(sda, GPIO_FUNC_I2C); gpio_pull_up(sda);
gpio_set_function(scl, GPIO_FUNC_I2C); gpio_pull_up(scl);
if(interrupt != PIN_UNUSED) {
gpio_set_function(interrupt, GPIO_FUNC_SIO);
gpio_set_dir(interrupt, GPIO_IN);
gpio_pull_up(interrupt);
}
reset();
interrupts(true, true);
// 50mA, 1.0 duty cycle, 30Hz, 1 pulse
proximity_led(50, 1.0, 30, 1);
// enabled, gain 4x
light_control(true, 4);
// enabled, saturation indicator enabled
proximity_control(true, true);
// 100ms measurement rate
proximity_measurement_rate(100);
// 50ms integration time and repeat rate
light_measurement_rate(50, 50);
light_threshold(0xFFFF, 0x0000);
proximity_threshold(0x7FFF, 0x7FFF);
proximity_offset(0);
return true;
}
void LTR559::reset() {
set_bits(LTR559_ALS_CONTROL, LTR559_ALS_CONTROL_SW_RESET_BIT);
while(get_bits(LTR559_ALS_CONTROL, LTR559_ALS_CONTROL_SW_RESET_BIT)) {
sleep_ms(100);
}
}
i2c_inst_t* LTR559::get_i2c() const {
return i2c;
}
int LTR559::get_sda() const {
return sda;
}
int LTR559::get_scl() const {
return scl;
}
int LTR559::get_int() const {
return interrupt;
}
uint8_t LTR559::part_id() {
uint8_t part_id;
read_bytes(LTR559_PART_ID, &part_id, 1);
return (part_id >> LTR559_PART_ID_PART_NUMBER_SHIFT) & LTR559_PART_ID_PART_NUMBER_MASK;
}
uint8_t LTR559::revision_id() {
uint8_t revision_id;
read_bytes(LTR559_PART_ID, &revision_id, 1);
return revision_id & LTR559_PART_ID_REVISION_MASK;
}
uint8_t LTR559::manufacturer_id() {
uint8_t manufacturer;
read_bytes(LTR559_MANUFACTURER_ID, &manufacturer, 1);
return manufacturer;
}
bool LTR559::get_reading() {
bool has_updated = false;
uint8_t status;
this->read_bytes(LTR559_ALS_PS_STATUS, &status, 1);
bool als_int = (status >> LTR559_ALS_PS_STATUS_ALS_INTERRUPT_BIT) & 0b1;
bool ps_int = (status >> LTR559_ALS_PS_STATUS_PS_INTERRUPT_BIT) & 0b1;
bool als_data = (status >> LTR559_ALS_PS_STATUS_ALS_DATA_BIT) & 0b1;
bool ps_data = (status >> LTR559_ALS_PS_STATUS_PS_DATA_BIT) & 0b1;
if(ps_int || ps_data) {
has_updated = true;
uint16_t ps0;
read_bytes(LTR559_PS_DATA, (uint8_t *)&ps0, 2);
ps0 &= LTR559_PS_DATA_MASK;
data.proximity = ps0;
}
if(als_int || als_data) {
has_updated = true;
uint16_t als[2];
read_bytes(LTR559_ALS_DATA_CH1, (uint8_t *)&als, 4);
data.als0 = als[1];
data.als1 = als[0];
data.gain = this->lookup_light_gain.value((status >> LTR559_ALS_PS_STATUS_ALS_GAIN_SHIFT) & LTR559_ALS_PS_STATUS_ALS_GAIN_MASK);
data.ratio = 101.0f;
if((uint32_t)data.als0 + data.als1 > 0) {
data.ratio = (float)data.als1 * 100.0f / ((float)data.als1 + data.als0);
}
uint8_t ch_idx = 3;
if(this->data.ratio < 45)
ch_idx = 0;
else if(data.ratio < 64)
ch_idx = 1;
else if (data.ratio < 85)
ch_idx = 2;
float lux = ((int32_t)data.als0 * ch0_c[ch_idx]) - ((int32_t)data.als1 * ch1_c[ch_idx]);
lux /= (float)this->data.integration_time / 100.0f;
lux /= (float)this->data.gain;
data.lux = (uint16_t)(lux / 10000.0f);
}
return has_updated;
}
void LTR559::interrupts(bool light, bool proximity) {
uint8_t buf = 0;
buf |= 0b1 << LTR559_INTERRUPT_POLARITY_BIT;
buf |= (uint8_t)light << LTR559_INTERRUPT_ALS_BIT;
buf |= (uint8_t)proximity << LTR559_INTERRUPT_PS_BIT;
write_bytes(LTR559_INTERRUPT, &buf, 1);
}
void LTR559::proximity_led(uint8_t current, uint8_t duty_cycle, uint8_t pulse_freq, uint8_t num_pulses) {
current = lookup_led_current.index(current);
duty_cycle = lookup_led_duty_cycle.index(duty_cycle);
duty_cycle <<= LTR559_PS_LED_DUTY_CYCLE_SHIFT;
pulse_freq = lookup_led_pulse_freq.index(pulse_freq);
pulse_freq <<= LTR559_PS_LED_PULSE_FREQ_SHIFT;
uint8_t buf = current | duty_cycle | pulse_freq;
write_bytes(LTR559_PS_LED, &buf, 1);
buf = num_pulses & LTR559_PS_N_PULSES_MASK;
write_bytes(LTR559_PS_N_PULSES, &buf, 1);
}
void LTR559::light_control(bool active, uint8_t gain) {
uint8_t buf = 0;
gain = lookup_light_gain.index(gain);
buf |= gain << LTR559_ALS_CONTROL_GAIN_SHIFT;
if(active)
buf |= (0b1 << LTR559_ALS_CONTROL_MODE_BIT);
else
buf &= ~(0b1 << LTR559_ALS_CONTROL_MODE_BIT);
write_bytes(LTR559_ALS_CONTROL, &buf, 1);
}
void LTR559::proximity_control(bool active, bool saturation_indicator) {
uint8_t buf = 0;
read_bytes(LTR559_PS_CONTROL, &buf, 1);
if(active)
buf |= LTR559_PS_CONTROL_ACTIVE_MASK;
else
buf &= ~LTR559_PS_CONTROL_ACTIVE_MASK;
if(saturation_indicator)
buf |= 0b1 << LTR559_PS_CONTROL_SATURATION_INDICATOR_ENABLE_BIT;
else
buf &= ~(0b1 << LTR559_PS_CONTROL_SATURATION_INDICATOR_ENABLE_BIT);
write_bytes(LTR559_PS_CONTROL, &buf, 1);
}
void LTR559::light_threshold(uint16_t lower, uint16_t upper) {
lower = __builtin_bswap16(lower);
upper = __builtin_bswap16(upper);
write_bytes(LTR559_ALS_THRESHOLD_LOWER, (uint8_t *)&lower, 2);
write_bytes(LTR559_ALS_THRESHOLD_UPPER, (uint8_t *)&upper, 2);
}
void LTR559::proximity_threshold(uint16_t lower, uint16_t upper) {
lower = uint16_to_bit12(lower);
upper = uint16_to_bit12(upper);
write_bytes(LTR559_PS_THRESHOLD_LOWER, (uint8_t *)&lower, 2);
write_bytes(LTR559_PS_THRESHOLD_UPPER, (uint8_t *)&upper, 2);
}
void LTR559::light_measurement_rate(uint16_t integration_time, uint16_t rate) {
data.integration_time = integration_time;
integration_time = lookup_light_integration_time.index(integration_time);
rate = lookup_light_repeat_rate.index(rate);
uint8_t buf = 0;
buf |= rate;
buf |= integration_time << LTR559_ALS_MEAS_RATE_INTEGRATION_TIME_SHIFT;
write_bytes(LTR559_ALS_MEAS_RATE, &buf, 1);
}
void LTR559::proximity_measurement_rate(uint16_t rate) {
uint8_t buf = lookup_proximity_meas_rate.index(rate);
write_bytes(LTR559_PS_MEAS_RATE, &buf, 1);
}
void LTR559::proximity_offset(uint16_t offset) {
offset &= LTR559_PS_OFFSET_MASK;
write_bytes(LTR559_PS_OFFSET, (uint8_t *)&offset, 1);
}
uint16_t LTR559::bit12_to_uint16(uint16_t value) {
return ((value & 0xFF00) >> 8) | ((value & 0x000F) << 8);
}
uint16_t LTR559::uint16_to_bit12(uint16_t value) {
return ((value & 0xFF) << 8) | ((value & 0xF00) >> 8);
}
// i2c functions
int LTR559::write_bytes(uint8_t reg, uint8_t *buf, int len) {
uint8_t buffer[len + 1];
buffer[0] = reg;
for(int x = 0; x < len; x++) {
buffer[x + 1] = buf[x];
}
return i2c_write_blocking(i2c, address, buffer, len + 1, false);
};
int LTR559::read_bytes(uint8_t reg, uint8_t *buf, int len) {
i2c_write_blocking(i2c, address, &reg, 1, true);
i2c_read_blocking(i2c, address, buf, len, false);
return len;
};
uint8_t LTR559::get_bits(uint8_t reg, uint8_t shift, uint8_t mask) {
uint8_t value;
read_bytes(reg, &value, 1);
return value & (mask << shift);
}
void LTR559::set_bits(uint8_t reg, uint8_t shift, uint8_t mask) {
uint8_t value;
read_bytes(reg, &value, 1);
value |= mask << shift;
write_bytes(reg, &value, 1);
}
void LTR559::clear_bits(uint8_t reg, uint8_t shift, uint8_t mask) {
uint8_t value;
read_bytes(reg, &value, 1);
value &= ~(mask << shift);
write_bytes(reg, &value, 1);
}
}

Wyświetl plik

@ -0,0 +1,199 @@
#pragma once
#include "hardware/i2c.h"
#include "hardware/gpio.h"
#include <vector>
#include <initializer_list>
#define LTR559_ALS_CONTROL 0x80
#define LTR559_ALS_CONTROL_GAIN_MASK 0b111
#define LTR559_ALS_CONTROL_GAIN_SHIFT 2
#define LTR559_ALS_CONTROL_SW_RESET_BIT 1
#define LTR559_ALS_CONTROL_MODE_BIT 0
#define LTR559_PS_CONTROL 0x81
#define LTR559_PS_CONTROL_SATURATION_INDICATOR_ENABLE_BIT 5
#define LTR559_PS_CONTROL_ACTIVE_MASK 0b11
#define LTR559_PS_LED 0x82
#define LTR559_PS_LED_PULSE_FREQ_MASK 0b111
#define LTR559_PS_LED_PULSE_FREQ_SHIFT 5
#define LTR559_PS_LED_DUTY_CYCLE_MASK 0b11
#define LTR559_PS_LED_DUTY_CYCLE_SHIFT 3
#define LTR559_PS_LED_CURRENT_MASK 0b111
#define LTR559_PS_N_PULSES 0x83
#define LTR559_PS_N_PULSES_MASK 0b1111
#define LTR559_PS_MEAS_RATE 0x84
#define LTR559_PS_MEAS_RATE_RATE_MS_MASK 0b1111
#define LTR559_ALS_MEAS_RATE 0x85
#define LTR559_ALS_MEAS_RATE_INTEGRATION_TIME_MASK 0b111
#define LTR559_ALS_MEAS_RATE_INTEGRATION_TIME_SHIFT 3
#define LTR559_ALS_MEAS_RATE_REPEAT_RATE_MASK 0b111
#define LTR559_PART_ID 0x86
#define LTR559_PART_ID_PART_NUMBER_MASK 0b1111
#define LTR559_PART_ID_PART_NUMBER_SHIFT 4
#define LTR559_PART_ID_REVISION_MASK 0b1111
#define LTR559_MANUFACTURER_ID 0x87
#define LTR559_ALS_DATA 0x88
#define LTR559_ALS_DATA_CH1 0x88
#define LTR559_ALS_DATA_CH0 0x8a
#define LTR559_ALS_PS_STATUS 0x8c
#define LTR559_ALS_PS_STATUS_INTERRUPT_MASK 0b00001010
#define LTR559_ALS_PS_STATUS_ALS_DATA_VALID_BIT 7
#define LTR559_ALS_PS_STATUS_ALS_GAIN_MASK 0b111
#define LTR559_ALS_PS_STATUS_ALS_GAIN_SHIFT 4
#define LTR559_ALS_PS_STATUS_ALS_INTERRUPT_BIT 3
#define LTR559_ALS_PS_STATUS_ALS_DATA_BIT 2
#define LTR559_ALS_PS_STATUS_PS_INTERRUPT_BIT 1
#define LTR559_ALS_PS_STATUS_PS_DATA_BIT 0
#define LTR559_PS_DATA 0x8d
#define LTR559_PS_DATA_MASK 0x07FF
#define LTR559_PS_DATA_SATURATION 0x8e
#define LTR559_PS_DATA_SATURATION_SHIFT 4
#define LTR559_INTERRUPT 0x8f
#define LTR559_INTERRUPT_POLARITY_BIT 2
#define LTR559_INTERRUPT_ALS_PS_MASK 0b11
#define LTR559_INTERRUPT_PS_BIT 0
#define LTR559_INTERRUPT_ALS_BIT 1
#define LTR559_PS_THRESHOLD_UPPER 0x90
#define LTR559_PS_THRESHOLD_LOWER 0x92
#define LTR559_PS_OFFSET 0x94
#define LTR559_PS_OFFSET_MASK 0x03FF
#define LTR559_ALS_THRESHOLD_UPPER 0x97
#define LTR559_ALS_THRESHOLD_LOWER 0x99
#define LTR559_INTERRUPT_PERSIST 0x9e
#define LTR559_INTERRUPT_PERSIST_PS_MASK 0b1111
#define LTR559_INTERRUPT_PERSIST_PS_SHIFT 4
#define LTR559_INTERRUPT_PERSIST_ALS_MASK 0b1111
#define LTR559_VALID_PART_ID 0x09
#define LTR559_VALID_REVISION_ID 0x02
namespace pimoroni {
typedef struct {
uint16_t proximity;
uint16_t als0;
uint16_t als1;
uint16_t integration_time;
uint16_t gain;
float ratio;
uint16_t lux;
} ltr559_reading;
class lookup {
private:
std::vector<uint16_t> lut;
public:
lookup(std::initializer_list<uint16_t> values);
uint8_t index(uint16_t value);
uint16_t value(uint8_t index);
};
class LTR559 {
//--------------------------------------------------
// Constants
//--------------------------------------------------
public:
static const uint8_t DEFAULT_I2C_ADDRESS = 0x23;
static const uint8_t DEFAULT_SDA_PIN = 20;
static const uint8_t DEFAULT_SCL_PIN = 21;
static const uint8_t DEFAULT_INT_PIN = 22;
static const uint8_t PIN_UNUSED = UINT8_MAX;
private:
const int ch0_c[4] = {17743, 42785, 5926, 0};
const int ch1_c[4] = {-11059, 19548, -1185, 0};
//--------------------------------------------------
// Variables
//--------------------------------------------------
public:
ltr559_reading data;
private:
i2c_inst_t *i2c = i2c0;
// interface pins with our standard defaults where appropriate
int8_t address = DEFAULT_I2C_ADDRESS;
int8_t sda = DEFAULT_SDA_PIN;
int8_t scl = DEFAULT_SCL_PIN;
int8_t interrupt = DEFAULT_INT_PIN;
static pimoroni::lookup lookup_led_current;
static pimoroni::lookup lookup_led_duty_cycle;
static pimoroni::lookup lookup_led_pulse_freq;
static pimoroni::lookup lookup_proximity_meas_rate;
static pimoroni::lookup lookup_light_integration_time;
static pimoroni::lookup lookup_light_repeat_rate;
static pimoroni::lookup lookup_light_gain;
//--------------------------------------------------
// Constructors/Destructor
//--------------------------------------------------
public:
LTR559() {}
LTR559(uint8_t address) :
address(address) {}
LTR559(i2c_inst_t *i2c, uint8_t address, uint8_t sda, uint8_t scl, uint8_t interrupt = PIN_UNUSED) :
i2c(i2c), address(address), sda(sda), scl(scl), interrupt(interrupt) {}
//--------------------------------------------------
// Methods
//--------------------------------------------------
public:
bool init();
void reset();
i2c_inst_t* get_i2c() const;
int get_sda() const;
int get_scl() const;
int get_int() const;
uint8_t part_id();
uint8_t revision_id();
uint8_t manufacturer_id();
bool get_reading();
void interrupts(bool light, bool proximity);
void proximity_led(uint8_t current, uint8_t duty_cycle, uint8_t pulse_freq, uint8_t num_pulses);
void light_control(bool active, uint8_t gain);
void proximity_control(bool active, bool saturation_indicator);
void light_threshold(uint16_t lower, uint16_t upper);
void proximity_threshold(uint16_t lower, uint16_t upper);
void light_measurement_rate(uint16_t integration_time, uint16_t rate);
void proximity_measurement_rate(uint16_t rate);
void proximity_offset(uint16_t offset);
private:
uint16_t bit12_to_uint16(uint16_t value);
uint16_t uint16_to_bit12(uint16_t value);
// From i2cdevice
int write_bytes(uint8_t reg, uint8_t *buf, int len);
int read_bytes(uint8_t reg, uint8_t *buf, int len);
uint8_t get_bits(uint8_t reg, uint8_t shift, uint8_t mask=0b1);
void set_bits(uint8_t reg, uint8_t shift, uint8_t mask=0b1);
void clear_bits(uint8_t reg, uint8_t shift, uint8_t mask=0b1);
};
}

Wyświetl plik

@ -1,4 +1,5 @@
add_subdirectory(breakout_dotmatrix)
add_subdirectory(breakout_ltr559)
add_subdirectory(breakout_roundlcd)
add_subdirectory(breakout_rgbmatrix5x5)
add_subdirectory(breakout_matrix11x7)

Wyświetl plik

@ -0,0 +1,16 @@
set(OUTPUT_NAME ltr559_demo)
add_executable(
${OUTPUT_NAME}
demo.cpp
)
# enable usb output, disable uart output
pico_enable_stdio_usb(${OUTPUT_NAME} 1)
pico_enable_stdio_uart(${OUTPUT_NAME} 0)
# Pull in pico libraries that we need
target_link_libraries(${OUTPUT_NAME} pico_stdlib breakout_ltr559)
# create map/bin/hex file etc.
pico_add_extra_outputs(${OUTPUT_NAME})

Wyświetl plik

@ -0,0 +1,26 @@
#include <stdio.h>
#include "pico/stdlib.h"
#include "breakout_ltr559.hpp"
using namespace pimoroni;
BreakoutLTR559 ltr559;
int main() {
stdio_init_all();
ltr559.init();
uint8_t part_id = ltr559.part_id();
printf("Found LTR559. Part ID: 0x%02x\n", part_id);
while(true){
bool new_data = ltr559.get_reading();
if(new_data) {
printf("Lux: %d Prox: %d\n", ltr559.data.lux, ltr559.data.proximity);
}
sleep_ms(100);
};
return 0;
}

Wyświetl plik

@ -1,4 +1,5 @@
add_subdirectory(breakout_dotmatrix)
add_subdirectory(breakout_ltr559)
add_subdirectory(breakout_roundlcd)
add_subdirectory(breakout_rgbmatrix5x5)
add_subdirectory(breakout_matrix11x7)

Wyświetl plik

@ -0,0 +1 @@
include(breakout_ltr559.cmake)

Wyświetl plik

@ -0,0 +1,11 @@
set(LIB_NAME breakout_ltr559)
add_library(${LIB_NAME} INTERFACE)
target_sources(${LIB_NAME} INTERFACE
${CMAKE_CURRENT_LIST_DIR}/${LIB_NAME}.cpp
)
target_include_directories(${LIB_NAME} INTERFACE ${CMAKE_CURRENT_LIST_DIR})
# Pull in pico libraries that we need
target_link_libraries(${LIB_NAME} INTERFACE pico_stdlib ltr559)

Wyświetl plik

@ -0,0 +1,5 @@
#include "breakout_ltr559.hpp"
namespace pimoroni {
}

Wyświetl plik

@ -0,0 +1,8 @@
#pragma once
#include "../../drivers/ltr559/ltr559.hpp"
namespace pimoroni {
typedef LTR559 BreakoutLTR559;
}

Wyświetl plik

@ -0,0 +1,14 @@
import time
from breakout_ltr559 import BreakoutLTR559
ltr = BreakoutLTR559()
part_id = ltr.part_id()
print("Found LTR559. Part ID: 0x", '{:02x}'.format(part_id), sep="")
while True:
reading = ltr.get_reading()
if reading is not None:
print("Lux:", reading[BreakoutLTR559.LUX], "Prox:", reading[BreakoutLTR559.PROXIMITY])
time.sleep(0.1)

Wyświetl plik

@ -0,0 +1,77 @@
#include "breakout_ltr559.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// BreakoutLTR559 Class
////////////////////////////////////////////////////////////////////////////////////////////////////
/***** Methods *****/
MP_DEFINE_CONST_FUN_OBJ_1(BreakoutLTR559_part_id_obj, BreakoutLTR559_part_id);
MP_DEFINE_CONST_FUN_OBJ_1(BreakoutLTR559_revision_id_obj, BreakoutLTR559_revision_id);
MP_DEFINE_CONST_FUN_OBJ_1(BreakoutLTR559_manufacturer_id_obj, BreakoutLTR559_manufacturer_id);
MP_DEFINE_CONST_FUN_OBJ_1(BreakoutLTR559_get_reading_obj, BreakoutLTR559_get_reading);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_interrupts_obj, 3, BreakoutLTR559_interrupts);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_proximity_led_obj, 5, BreakoutLTR559_proximity_led);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_light_control_obj, 3, BreakoutLTR559_light_control);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_proximity_control_obj, 3, BreakoutLTR559_proximity_control);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_light_threshold_obj, 3, BreakoutLTR559_light_threshold);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_proximity_threshold_obj, 3, BreakoutLTR559_proximity_threshold);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_light_measurement_rate_obj, 3, BreakoutLTR559_light_measurement_rate);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_proximity_measurement_rate_obj, 2, BreakoutLTR559_proximity_measurement_rate);
MP_DEFINE_CONST_FUN_OBJ_KW(BreakoutLTR559_proximity_offset_obj, 2, BreakoutLTR559_proximity_offset);
/***** Binding of Methods *****/
STATIC const mp_rom_map_elem_t BreakoutLTR559_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_part_id), MP_ROM_PTR(&BreakoutLTR559_part_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_revision_id), MP_ROM_PTR(&BreakoutLTR559_revision_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_manufacturer_id), MP_ROM_PTR(&BreakoutLTR559_manufacturer_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_get_reading), MP_ROM_PTR(&BreakoutLTR559_get_reading_obj) },
{ MP_ROM_QSTR(MP_QSTR_interrupts), MP_ROM_PTR(&BreakoutLTR559_interrupts_obj) },
{ MP_ROM_QSTR(MP_QSTR_proximity_led), MP_ROM_PTR(&BreakoutLTR559_proximity_led_obj) },
{ MP_ROM_QSTR(MP_QSTR_light_control), MP_ROM_PTR(&BreakoutLTR559_light_control_obj) },
{ MP_ROM_QSTR(MP_QSTR_proximity_control), MP_ROM_PTR(&BreakoutLTR559_proximity_control_obj) },
{ MP_ROM_QSTR(MP_QSTR_light_threshold), MP_ROM_PTR(&BreakoutLTR559_light_threshold_obj) },
{ MP_ROM_QSTR(MP_QSTR_proximity_threshold), MP_ROM_PTR(&BreakoutLTR559_proximity_threshold_obj) },
{ MP_ROM_QSTR(MP_QSTR_light_measurement_rate), MP_ROM_PTR(&BreakoutLTR559_light_measurement_rate_obj) },
{ MP_ROM_QSTR(MP_QSTR_proximity_measurement_rate), MP_ROM_PTR(&BreakoutLTR559_proximity_measurement_rate_obj) },
{ MP_ROM_QSTR(MP_QSTR_proximity_offset), MP_ROM_PTR(&BreakoutLTR559_proximity_offset_obj) },
{ MP_ROM_QSTR(MP_QSTR_PROXIMITY), MP_ROM_INT(PROXIMITY) },
{ MP_ROM_QSTR(MP_QSTR_ALS_0), MP_ROM_INT(ALS_0) },
{ MP_ROM_QSTR(MP_QSTR_ALS_1), MP_ROM_INT(ALS_1) },
{ MP_ROM_QSTR(MP_QSTR_INTEGRATION_TIME), MP_ROM_INT(INTEGRATION_TIME) },
{ MP_ROM_QSTR(MP_QSTR_GAIN), MP_ROM_INT(GAIN) },
{ MP_ROM_QSTR(MP_QSTR_RATIO), MP_ROM_INT(RATIO) },
{ MP_ROM_QSTR(MP_QSTR_LUX), MP_ROM_INT(LUX) },
};
STATIC MP_DEFINE_CONST_DICT(BreakoutLTR559_locals_dict, BreakoutLTR559_locals_dict_table);
/***** Class Definition *****/
const mp_obj_type_t breakout_ltr559_BreakoutLTR559_type = {
{ &mp_type_type },
.name = MP_QSTR_breakout_ltr559,
.print = BreakoutLTR559_print,
.make_new = BreakoutLTR559_make_new,
.locals_dict = (mp_obj_dict_t*)&BreakoutLTR559_locals_dict,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// breakout_ltr559 Module
////////////////////////////////////////////////////////////////////////////////////////////////////
/***** Globals Table *****/
STATIC const mp_map_elem_t breakout_ltr559_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_breakout_ltr559) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BreakoutLTR559), (mp_obj_t)&breakout_ltr559_BreakoutLTR559_type },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_breakout_ltr559_globals, breakout_ltr559_globals_table);
/***** Module Definition *****/
const mp_obj_module_t breakout_ltr559_user_cmodule = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_breakout_ltr559_globals,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
MP_REGISTER_MODULE(MP_QSTR_breakout_ltr559, breakout_ltr559_user_cmodule, MODULE_BREAKOUT_LTR559_ENABLED);
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////

Wyświetl plik

@ -0,0 +1,357 @@
#include "../../../libraries/breakout_ltr559/breakout_ltr559.hpp"
#define MP_OBJ_TO_PTR2(o, t) ((t *)(uintptr_t)(o))
// SDA/SCL on even/odd pins, I2C0/I2C1 on even/odd pairs of pins.
#define IS_VALID_SCL(i2c, pin) (((pin) & 1) == 1 && (((pin) & 2) >> 1) == (i2c))
#define IS_VALID_SDA(i2c, pin) (((pin) & 1) == 0 && (((pin) & 2) >> 1) == (i2c))
using namespace pimoroni;
extern "C" {
#include "breakout_ltr559.h"
/***** Variables Struct *****/
typedef struct _breakout_ltr559_BreakoutLTR559_obj_t {
mp_obj_base_t base;
BreakoutLTR559 *breakout;
} breakout_ltr559_BreakoutLTR559_obj_t;
/***** Print *****/
void BreakoutLTR559_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind; //Unused input parameter
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
BreakoutLTR559* breakout = self->breakout;
mp_print_str(print, "BreakoutLTR559(");
mp_print_str(print, "i2c = ");
mp_obj_print_helper(print, mp_obj_new_int((breakout->get_i2c() == i2c0) ? 0 : 1), PRINT_REPR);
mp_print_str(print, ", sda = ");
mp_obj_print_helper(print, mp_obj_new_int(breakout->get_sda()), PRINT_REPR);
mp_print_str(print, ", scl = ");
mp_obj_print_helper(print, mp_obj_new_int(breakout->get_scl()), PRINT_REPR);
mp_print_str(print, ", int = ");
mp_obj_print_helper(print, mp_obj_new_int(breakout->get_int()), PRINT_REPR);
mp_print_str(print, ")");
}
/***** Constructor *****/
mp_obj_t BreakoutLTR559_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
breakout_ltr559_BreakoutLTR559_obj_t *self = nullptr;
if(n_args == 0) {
mp_arg_check_num(n_args, n_kw, 0, 0, true);
self = m_new_obj(breakout_ltr559_BreakoutLTR559_obj_t);
self->base.type = &breakout_ltr559_BreakoutLTR559_type;
self->breakout = new BreakoutLTR559();
}
else if(n_args == 1) {
enum { ARG_address };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_address, MP_ARG_REQUIRED | MP_ARG_INT },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self = m_new_obj(breakout_ltr559_BreakoutLTR559_obj_t);
self->base.type = &breakout_ltr559_BreakoutLTR559_type;
self->breakout = new BreakoutLTR559(args[ARG_address].u_int);
}
else {
enum { ARG_i2c, ARG_address, ARG_sda, ARG_scl, ARG_interrupt };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_i2c, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_address, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_interrupt, MP_ARG_INT, {.u_int = BreakoutLTR559::PIN_UNUSED} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get I2C bus.
int i2c_id = args[ARG_i2c].u_int;
if(i2c_id < 0 || i2c_id > 1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("I2C(%d) doesn't exist"), i2c_id);
}
int sda = args[ARG_sda].u_int;
if (!IS_VALID_SDA(i2c_id, sda)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad SDA pin"));
}
int scl = args[ARG_scl].u_int;
if (!IS_VALID_SCL(i2c_id, scl)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad SCL pin"));
}
self = m_new_obj(breakout_ltr559_BreakoutLTR559_obj_t);
self->base.type = &breakout_ltr559_BreakoutLTR559_type;
i2c_inst_t *i2c = (i2c_id == 0) ? i2c0 : i2c1;
self->breakout = new BreakoutLTR559(i2c, args[ARG_address].u_int, sda, scl, args[ARG_interrupt].u_int);
}
self->breakout->init();
return MP_OBJ_FROM_PTR(self);
}
mp_obj_t BreakoutLTR559_part_id(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
return mp_obj_new_int(self->breakout->part_id());
}
mp_obj_t BreakoutLTR559_revision_id(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
return mp_obj_new_int(self->breakout->revision_id());
}
mp_obj_t BreakoutLTR559_manufacturer_id(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
return mp_obj_new_int(self->breakout->manufacturer_id());
}
mp_obj_t BreakoutLTR559_get_reading(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
if(self->breakout->get_reading()) {
const ltr559_reading& data = self->breakout->data;
mp_obj_t tuple[7];
tuple[PROXIMITY] = mp_obj_new_int(data.proximity);
tuple[ALS_0] = mp_obj_new_int(data.als0);
tuple[ALS_1] = mp_obj_new_int(data.als1);
tuple[INTEGRATION_TIME] = mp_obj_new_int(data.integration_time);
tuple[GAIN] = mp_obj_new_int(data.gain);
tuple[RATIO] = mp_obj_new_float(data.ratio);
tuple[LUX] = mp_obj_new_int(data.lux);
return mp_obj_new_tuple(7, tuple);
}
return mp_const_none;
}
mp_obj_t BreakoutLTR559_interrupts(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_light, ARG_proximity };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_light, MP_ARG_REQUIRED | MP_ARG_BOOL },
{ MP_QSTR_proximity, MP_ARG_REQUIRED | MP_ARG_BOOL },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
self->breakout->interrupts(args[ARG_light].u_bool, args[ARG_proximity].u_bool);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_led(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_current, ARG_duty_cycle, ARG_pulse_freq, ARG_num_pulses };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_current, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_duty_cycle, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_pulse_freq, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_num_pulses, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int current = args[ARG_current].u_int;
int duty_cycle = args[ARG_duty_cycle].u_int;
int pulse_freq = args[ARG_pulse_freq].u_int;
int num_pulses = args[ARG_num_pulses].u_int;
if(current < 0 || current > 255)
mp_raise_ValueError("current out of range. Expected 0 to 255");
else if(duty_cycle < 0 || duty_cycle > 255)
mp_raise_ValueError("duty_cycle out of range. Expected 0 to 255");
else if(pulse_freq < 0 || pulse_freq > 255)
mp_raise_ValueError("pulse_freq out of range. Expected 0 to 255");
else if(num_pulses < 0 || num_pulses > 255)
mp_raise_ValueError("num_pulses out of range. Expected 0 to 255");
else
self->breakout->proximity_led(current, duty_cycle, pulse_freq, num_pulses);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_light_control(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_active, ARG_gain };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_active, MP_ARG_REQUIRED | MP_ARG_BOOL },
{ MP_QSTR_gain, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int gain = args[ARG_gain].u_int;
if(gain < 0 || gain > 255)
mp_raise_ValueError("gain out of range. Expected 0 to 255");
else
self->breakout->light_control(args[ARG_active].u_bool, gain);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_control(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_active, ARG_saturation_indicator };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_active, MP_ARG_REQUIRED | MP_ARG_BOOL },
{ MP_QSTR_saturation_indicator, MP_ARG_REQUIRED | MP_ARG_BOOL },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
self->breakout->proximity_control(args[ARG_active].u_bool, args[ARG_saturation_indicator].u_bool);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_light_threshold(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_lower, ARG_upper };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_lower, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_upper, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int lower = args[ARG_lower].u_int;
int upper = args[ARG_upper].u_int;
if(lower < 0 || lower > 65535)
mp_raise_ValueError("lower out of range. Expected 0 to 65535");
else if(upper < 0 || upper > 65535)
mp_raise_ValueError("upper out of range. Expected 0 to 65535");
else
self->breakout->light_threshold(lower, upper);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_threshold(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_lower, ARG_upper };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_lower, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_upper, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int lower = args[ARG_lower].u_int;
int upper = args[ARG_upper].u_int;
if(lower < 0 || lower > 65535)
mp_raise_ValueError("lower out of range. Expected 0 to 65535");
else if(upper < 0 || upper > 65535)
mp_raise_ValueError("upper out of range. Expected 0 to 65535");
else
self->breakout->proximity_threshold(lower, upper);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_light_measurement_rate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_integration_time, ARG_rate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_integration_time, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_rate, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int integration_time = args[ARG_integration_time].u_int;
int rate = args[ARG_rate].u_int;
if(integration_time < 0 || integration_time > 65535)
mp_raise_ValueError("integration_time out of range. Expected 0 to 65535");
else if(rate < 0 || rate > 65535)
mp_raise_ValueError("rate out of range. Expected 0 to 65535");
else
self->breakout->light_measurement_rate(integration_time, rate);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_measurement_rate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_rate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_rate, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int rate = args[ARG_rate].u_int;
if(rate < 0 || rate > 65535)
mp_raise_ValueError("rate out of range. Expected 0 to 65535");
else
self->breakout->proximity_measurement_rate(rate);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_offset(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_offset };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_offset, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int offset = args[ARG_offset].u_int;
if(offset < 0 || offset > 65535)
mp_raise_ValueError("offset out of range. Expected 0 to 65535");
else
self->breakout->proximity_offset(offset);
return mp_const_none;
}
}

Wyświetl plik

@ -0,0 +1,34 @@
// Include MicroPython API.
#include "py/runtime.h"
#include "py/objstr.h"
/***** Constants *****/
enum {
PROXIMITY = 0,
ALS_0,
ALS_1,
INTEGRATION_TIME,
GAIN,
RATIO,
LUX
};
/***** Extern of Class Definition *****/
extern const mp_obj_type_t breakout_ltr559_BreakoutLTR559_type;
/***** Extern of Class Methods *****/
extern void BreakoutLTR559_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind);
extern mp_obj_t BreakoutLTR559_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args);
extern mp_obj_t BreakoutLTR559_part_id(mp_obj_t self_in);
extern mp_obj_t BreakoutLTR559_revision_id(mp_obj_t self_in);
extern mp_obj_t BreakoutLTR559_manufacturer_id(mp_obj_t self_in);
extern mp_obj_t BreakoutLTR559_get_reading(mp_obj_t self_in);
extern mp_obj_t BreakoutLTR559_interrupts(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_proximity_led(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_light_control(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_proximity_control(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_light_threshold(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_proximity_threshold(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_light_measurement_rate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_proximity_measurement_rate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
extern mp_obj_t BreakoutLTR559_proximity_offset(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);

Wyświetl plik

@ -0,0 +1,20 @@
set(MOD_NAME breakout_ltr559)
string(TOUPPER ${MOD_NAME} MOD_NAME_UPPER)
add_library(usermod_${MOD_NAME} INTERFACE)
target_sources(usermod_${MOD_NAME} INTERFACE
${CMAKE_CURRENT_LIST_DIR}/${MOD_NAME}.c
${CMAKE_CURRENT_LIST_DIR}/${MOD_NAME}.cpp
${CMAKE_CURRENT_LIST_DIR}/../../../libraries/${MOD_NAME}/${MOD_NAME}.cpp
${CMAKE_CURRENT_LIST_DIR}/../../../drivers/ltr559/ltr559.cpp
)
target_include_directories(usermod_${MOD_NAME} INTERFACE
${CMAKE_CURRENT_LIST_DIR}
)
target_compile_definitions(usermod_${MOD_NAME} INTERFACE
-DMODULE_${MOD_NAME_UPPER}_ENABLED=1
)
target_link_libraries(usermod INTERFACE usermod_${MOD_NAME})

Wyświetl plik

@ -0,0 +1,13 @@
set(MOD_NAME breakout_ltr559)
BREAKOUT_MOD_DIR := $(USERMOD_DIR)
# Add our source files to the respective variables.
SRC_USERMOD += $(BREAKOUT_MOD_DIR)/${MOD_NAME}.c
SRC_USERMOD_CXX += $(BREAKOUT_MOD_DIR)/${MOD_NAME}.cpp
# Add our module directory to the include path.
CFLAGS_USERMOD += -I$(BREAKOUT_MOD_DIR)
CXXFLAGS_USERMOD += -I$(BREAKOUT_MOD_DIR)
# We use C++ features so have to link against the standard library.
LDFLAGS_USERMOD += -lstdc++

Wyświetl plik

@ -1,4 +1,5 @@
include(${CMAKE_CURRENT_LIST_DIR}/breakout_dotmatrix/micropython.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/breakout_ltr559/micropython.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/breakout_roundlcd/micropython.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/breakout_rgbmatrix5x5/micropython.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/breakout_matrix11x7/micropython.cmake)