nanovna-saver/NanoVNASaver/Analysis.py

622 wiersze
28 KiB
Python

# NanoVNASaver - a python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
logger = logging.getLogger(__name__)
class Analysis:
_widget = None
def __init__(self, app):
from NanoVNASaver.NanoVNASaver import NanoVNASaver
self.app: NanoVNASaver = app
def widget(self) -> QtWidgets.QWidget:
return self._widget
def runAnalysis(self):
pass
def reset(self):
pass
class LowPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Low pass filter analysis"))
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.cutoff_label = QtWidgets.QLabel()
self.six_db_label = QtWidgets.QLabel()
self.sixty_db_label = QtWidgets.QLabel()
self.db_per_octave_label = QtWidgets.QLabel()
self.db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow("Cutoff frequency:", self.cutoff_label)
layout.addRow("-6 dB point:", self.six_db_label)
layout.addRow("-60 dB point:", self.sixty_db_label)
layout.addRow("Roll-off:", self.db_per_octave_label)
layout.addRow("Roll-off:", self.db_per_decade_label)
def reset(self):
self.result_label.clear()
self.cutoff_label.clear()
self.six_db_label.clear()
self.sixty_db_label.clear()
self.db_per_octave_label.clear()
self.db_per_decade_label.clear()
def runAnalysis(self):
from NanoVNASaver.NanoVNASaver import NanoVNASaver
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
return
pass_band_db = NanoVNASaver.gain(self.app.data21[pass_band_location])
logger.debug("Initial passband gain: %d", pass_band_db)
initial_cutoff_location = -1
for i in range(pass_band_location, len(self.app.data21)):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found a cutoff location
initial_cutoff_location = i
break
if initial_cutoff_location < 0:
self.result_label.setText("Cutoff location not found.")
return
initial_cutoff_frequency = self.app.data21[initial_cutoff_location].freq
logger.debug("Found initial cutoff frequency at %d", initial_cutoff_frequency)
peak_location = -1
peak_db = NanoVNASaver.gain(self.app.data21[initial_cutoff_location])
for i in range(0, initial_cutoff_location):
db = NanoVNASaver.gain(self.app.data21[i])
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
self.app.markers[0].setFrequency(str(self.app.data21[peak_location].freq))
self.app.markers[0].frequencyInput.setText(str(self.app.data21[peak_location].freq))
cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, len(self.app.data21)):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found the cutoff location
cutoff_location = i
break
cutoff_frequency = self.app.data21[cutoff_location].freq
cutoff_gain = NanoVNASaver.gain(self.app.data21[cutoff_location]) - pass_band_db
if cutoff_gain < -4:
logger.debug("Cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
cutoff_gain)
logger.debug("Found true cutoff frequency at %d", cutoff_frequency)
self.cutoff_label.setText(NanoVNASaver.formatFrequency(cutoff_frequency) +
" (" + str(round(cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(cutoff_frequency))
six_db_location = -1
for i in range(cutoff_location, len(self.app.data21)):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 6:
# We found 6dB location
six_db_location = i
break
if six_db_location < 0:
self.result_label.setText("6 dB location not found.")
return
six_db_cutoff_frequency = self.app.data21[six_db_location].freq
self.six_db_label.setText(NanoVNASaver.formatFrequency(six_db_cutoff_frequency))
six_db_attenuation = NanoVNASaver.gain(self.app.data21[six_db_location])
max_attenuation = NanoVNASaver.gain(self.app.data21[len(self.app.data21) - 1])
frequency_factor = self.app.data21[len(self.app.data21) - 1].freq / six_db_cutoff_frequency
attenuation = (max_attenuation - six_db_attenuation)
logger.debug("Measured points: %d Hz and %d Hz", six_db_cutoff_frequency, self.app.data21[len(self.app.data21) - 1].freq)
logger.debug("%d dB over %f factor", attenuation, frequency_factor)
octave_attenuation = attenuation / (math.log10(frequency_factor) / math.log10(2))
self.db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
decade_attenuation = attenuation / math.log10(frequency_factor)
self.db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
sixty_db_location = -1
for i in range(six_db_location, len(self.app.data21)):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location < 0:
# # We derive 60 dB instead
# factor = 10 * (-54 / decade_attenuation)
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
self.sixty_db_label.setText("Not calculated")
else:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")
class HighPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("High pass filter analysis"))
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.cutoff_label = QtWidgets.QLabel()
self.six_db_label = QtWidgets.QLabel()
self.sixty_db_label = QtWidgets.QLabel()
self.db_per_octave_label = QtWidgets.QLabel()
self.db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow("Cutoff frequency:", self.cutoff_label)
layout.addRow("-6 dB point:", self.six_db_label)
layout.addRow("-60 dB point:", self.sixty_db_label)
layout.addRow("Roll-off:", self.db_per_octave_label)
layout.addRow("Roll-off:", self.db_per_decade_label)
def reset(self):
self.result_label.clear()
self.cutoff_label.clear()
self.six_db_label.clear()
self.sixty_db_label.clear()
self.db_per_octave_label.clear()
self.db_per_decade_label.clear()
def runAnalysis(self):
from NanoVNASaver.NanoVNASaver import NanoVNASaver
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
return
pass_band_db = NanoVNASaver.gain(self.app.data21[pass_band_location])
logger.debug("Initial passband gain: %d", pass_band_db)
initial_cutoff_location = -1
for i in range(pass_band_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found a cutoff location
initial_cutoff_location = i
break
if initial_cutoff_location < 0:
self.result_label.setText("Cutoff location not found.")
return
initial_cutoff_frequency = self.app.data21[initial_cutoff_location].freq
logger.debug("Found initial cutoff frequency at %d", initial_cutoff_frequency)
peak_location = -1
peak_db = NanoVNASaver.gain(self.app.data21[initial_cutoff_location])
for i in range(len(self.app.data21) - 1, initial_cutoff_location - 1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
self.app.markers[0].setFrequency(str(self.app.data21[peak_location].freq))
self.app.markers[0].frequencyInput.setText(str(self.app.data21[peak_location].freq))
cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found the cutoff location
cutoff_location = i
break
cutoff_frequency = self.app.data21[cutoff_location].freq
cutoff_gain = NanoVNASaver.gain(self.app.data21[cutoff_location]) - pass_band_db
if cutoff_gain < -4:
logger.debug("Cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
cutoff_gain)
logger.debug("Found true cutoff frequency at %d", cutoff_frequency)
self.cutoff_label.setText(NanoVNASaver.formatFrequency(cutoff_frequency) +
" (" + str(round(cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(cutoff_frequency))
six_db_location = -1
for i in range(cutoff_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 6:
# We found 6dB location
six_db_location = i
break
if six_db_location < 0:
self.result_label.setText("6 dB location not found.")
return
six_db_cutoff_frequency = self.app.data21[six_db_location].freq
self.six_db_label.setText(NanoVNASaver.formatFrequency(six_db_cutoff_frequency))
six_db_attenuation = NanoVNASaver.gain(self.app.data21[six_db_location])
max_attenuation = NanoVNASaver.gain(self.app.data21[len(self.app.data21) - 1])
frequency_factor = self.app.data21[len(self.app.data21) - 1].freq / six_db_cutoff_frequency
attenuation = (max_attenuation - six_db_attenuation)
logger.debug("Measured points: %d Hz and %d Hz", six_db_cutoff_frequency, self.app.data21[len(self.app.data21) - 1].freq)
logger.debug("%d dB over %f factor", attenuation, frequency_factor)
octave_attenuation = attenuation / (math.log10(frequency_factor) / math.log10(2))
self.db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
decade_attenuation = attenuation / math.log10(frequency_factor)
self.db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
sixty_db_location = -1
for i in range(six_db_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location < 0:
# # We derive 60 dB instead
# factor = 10 * (-54 / decade_attenuation)
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
self.sixty_db_label.setText("Not calculated")
else:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")
class BandPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Band pass filter analysis"))
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.lower_cutoff_label = QtWidgets.QLabel()
self.lower_six_db_label = QtWidgets.QLabel()
self.lower_sixty_db_label = QtWidgets.QLabel()
self.lower_db_per_octave_label = QtWidgets.QLabel()
self.lower_db_per_decade_label = QtWidgets.QLabel()
self.upper_cutoff_label = QtWidgets.QLabel()
self.upper_six_db_label = QtWidgets.QLabel()
self.upper_sixty_db_label = QtWidgets.QLabel()
self.upper_db_per_octave_label = QtWidgets.QLabel()
self.upper_db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow(QtWidgets.QLabel(""))
self.center_frequency_label = QtWidgets.QLabel()
self.span_label = QtWidgets.QLabel()
self.quality_label = QtWidgets.QLabel()
layout.addRow("Center frequency:", self.center_frequency_label)
layout.addRow("Span:", self.span_label)
layout.addRow("Quality factor:", self.quality_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
layout.addRow("-6 dB point:", self.lower_six_db_label)
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
layout.addRow("-6 dB point:", self.upper_six_db_label)
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
def reset(self):
self.result_label.clear()
self.upper_cutoff_label.clear()
self.upper_six_db_label.clear()
self.upper_sixty_db_label.clear()
self.upper_db_per_octave_label.clear()
self.upper_db_per_decade_label.clear()
self.lower_cutoff_label.clear()
self.lower_six_db_label.clear()
self.lower_sixty_db_label.clear()
self.lower_db_per_octave_label.clear()
self.lower_db_per_decade_label.clear()
def runAnalysis(self):
from NanoVNASaver.NanoVNASaver import NanoVNASaver
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
return
pass_band_db = NanoVNASaver.gain(self.app.data21[pass_band_location])
logger.debug("Initial passband gain: %d", pass_band_db)
initial_lower_cutoff_location = -1
for i in range(pass_band_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found a cutoff location
initial_lower_cutoff_location = i
break
if initial_lower_cutoff_location < 0:
self.result_label.setText("Lower cutoff location not found.")
return
initial_lower_cutoff_frequency = self.app.data21[initial_lower_cutoff_location].freq
logger.debug("Found initial lower cutoff frequency at %d", initial_lower_cutoff_frequency)
initial_upper_cutoff_location = -1
for i in range(pass_band_location, len(self.app.data21), 1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found a cutoff location
initial_upper_cutoff_location = i
break
if initial_upper_cutoff_location < 0:
self.result_label.setText("Upper cutoff location not found.")
return
initial_upper_cutoff_frequency = self.app.data21[initial_upper_cutoff_location].freq
logger.debug("Found initial upper cutoff frequency at %d", initial_upper_cutoff_frequency)
peak_location = -1
peak_db = NanoVNASaver.gain(self.app.data21[initial_lower_cutoff_location])
for i in range(initial_lower_cutoff_location, initial_upper_cutoff_location, 1):
db = NanoVNASaver.gain(self.app.data21[i])
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
lower_cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found the cutoff location
lower_cutoff_location = i
break
lower_cutoff_frequency = self.app.data21[lower_cutoff_location].freq
lower_cutoff_gain = NanoVNASaver.gain(self.app.data21[lower_cutoff_location]) - pass_band_db
if lower_cutoff_gain < -4:
logger.debug("Lower cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
lower_cutoff_gain)
logger.debug("Found true lower cutoff frequency at %d", lower_cutoff_frequency)
self.lower_cutoff_label.setText(NanoVNASaver.formatFrequency(lower_cutoff_frequency) +
" (" + str(round(lower_cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
upper_cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, len(self.app.data21), 1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 3:
# We found the cutoff location
upper_cutoff_location = i
break
upper_cutoff_frequency = self.app.data21[upper_cutoff_location].freq
upper_cutoff_gain = NanoVNASaver.gain(self.app.data21[upper_cutoff_location]) - pass_band_db
if upper_cutoff_gain < -4:
logger.debug("Upper cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
upper_cutoff_gain)
logger.debug("Found true upper cutoff frequency at %d", upper_cutoff_frequency)
self.upper_cutoff_label.setText(NanoVNASaver.formatFrequency(upper_cutoff_frequency) +
" (" + str(round(upper_cutoff_gain, 1)) + " dB)")
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
span = upper_cutoff_frequency - lower_cutoff_frequency
center_frequency = math.sqrt(lower_cutoff_frequency * upper_cutoff_frequency)
q = center_frequency / span
self.span_label.setText(NanoVNASaver.formatFrequency(span))
self.center_frequency_label.setText(NanoVNASaver.formatFrequency(center_frequency))
self.quality_label.setText(str(round(q, 2)))
self.app.markers[0].setFrequency(str(round(center_frequency)))
self.app.markers[0].frequencyInput.setText(str(round(center_frequency)))
# Lower roll-off
lower_six_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 6:
# We found 6dB location
lower_six_db_location = i
break
if lower_six_db_location < 0:
self.result_label.setText("Lower 6 dB location not found.")
return
lower_six_db_cutoff_frequency = self.app.data21[lower_six_db_location].freq
self.lower_six_db_label.setText(NanoVNASaver.formatFrequency(lower_six_db_cutoff_frequency))
lower_six_db_attenuation = NanoVNASaver.gain(self.app.data21[lower_six_db_location])
lower_max_attenuation = NanoVNASaver.gain(self.app.data21[0])
frequency_factor = self.app.data21[0].freq / lower_six_db_cutoff_frequency
lower_attenuation = (lower_max_attenuation - lower_six_db_attenuation)
logger.debug("Measured points: %d Hz and %d Hz", lower_six_db_cutoff_frequency, self.app.data21[0].freq)
logger.debug("%d dB over %f factor", lower_attenuation, frequency_factor)
octave_attenuation = lower_attenuation / (math.log10(frequency_factor) / math.log10(2))
self.lower_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
decade_attenuation = lower_attenuation / math.log10(frequency_factor)
self.lower_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
lower_sixty_db_location = -1
for i in range(lower_six_db_location, -1, -1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 60:
# We found 60dB location! Wow.
lower_sixty_db_location = i
break
if lower_sixty_db_location < 0:
# # We derive 60 dB instead
# factor = 10 * (-54 / decade_attenuation)
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
# self.upper_sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
self.lower_sixty_db_label.setText("Not calculated")
else:
lower_sixty_db_cutoff_frequency = self.app.data21[lower_sixty_db_location].freq
self.lower_sixty_db_label.setText(NanoVNASaver.formatFrequency(lower_sixty_db_cutoff_frequency))
# Upper roll-off
upper_six_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data21), 1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 6:
# We found 6dB location
upper_six_db_location = i
break
if upper_six_db_location < 0:
self.result_label.setText("Upper 6 dB location not found.")
return
upper_six_db_cutoff_frequency = self.app.data21[upper_six_db_location].freq
self.upper_six_db_label.setText(NanoVNASaver.formatFrequency(upper_six_db_cutoff_frequency))
upper_six_db_attenuation = NanoVNASaver.gain(self.app.data21[upper_six_db_location])
upper_max_attenuation = NanoVNASaver.gain(self.app.data21[len(self.app.data21)-1])
frequency_factor = upper_six_db_cutoff_frequency / self.app.data21[len(self.app.data21)-1].freq
upper_attenuation = (upper_max_attenuation - upper_six_db_attenuation)
logger.debug("Measured points: %d Hz and %d Hz", upper_six_db_cutoff_frequency,
self.app.data21[len(self.app.data21)-1].freq)
logger.debug("%d dB over %f factor", upper_attenuation, frequency_factor)
octave_attenuation = upper_attenuation / (math.log10(frequency_factor) / math.log10(2))
self.upper_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
decade_attenuation = upper_attenuation / math.log10(frequency_factor)
self.upper_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
upper_sixty_db_location = -1
for i in range(upper_six_db_location, len(self.app.data21), 1):
db = NanoVNASaver.gain(self.app.data21[i])
if (pass_band_db - db) > 60:
# We found 60dB location! Wow.
upper_sixty_db_location = i
break
if upper_sixty_db_location < 0:
# # We derive 60 dB instead
# factor = 10 * (-54 / decade_attenuation)
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
# self.upper_sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
self.upper_sixty_db_label.setText("Not calculated")
else:
upper_sixty_db_cutoff_frequency = self.app.data21[upper_sixty_db_location].freq
self.upper_sixty_db_label.setText(NanoVNASaver.formatFrequency(upper_sixty_db_cutoff_frequency))
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)\n" +
"Insufficient data for analysis. Increase segment count.")
else:
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")