micropython-nano-gui/drivers/epaper/pico_epaper_42_v2_gs.py

336 wiersze
11 KiB
Python

# Materials used for discovery can be found here
# https://www.waveshare.com/wiki/4.2inch_e-Paper_Module_Manual#Introduction
# Note, at the time of writing this, none of the source materials have working
# code that works with partial refresh, as the C code has a bug and all the other
# materials use that reference material as the source of truth.
# *****************************************************************************
# * | File : pico_epaper_42_v2_gs.py
# * | Author : michael surdouski
# * | Function : Electronic paper driver (greyscale)
# *----------------
# * | This version: rev2.2
# * | Date : 2024-05-22
# -----------------------------------------------------------------------------
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documnetation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
from machine import Pin, SPI
import framebuf
import time
import asyncio
from drivers.boolpalette import BoolPalette
def asyncio_running():
try:
_ = asyncio.current_task()
except:
return False
return True
# Display resolution
_EPD_WIDTH = const(400)
_BWIDTH = _EPD_WIDTH // 4
_EPD_HEIGHT = const(300)
_RST_PIN = const(12)
_DC_PIN = const(8)
_CS_PIN = const(9)
_BUSY_PIN = const(13)
_WHITE = 0xff # white
_LIGHT_GREY = 0xC0
_DARK_GREY = 0x80 # gray
_BLACK = 0x00 # Blackest
_LUT = b"\x01\n\x1b\x0f\x03\x01\x01\x05\n\x01\n\x01\x01\x01\x05\x08\x03\x02\x04\x01\x01\
\x01\x04\x04\x02\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\
\n\x1b\x0f\x03\x01\x01\x05J\x01\x8a\x01\x01\x01\x05H\x03\x82\x84\x01\x01\x01\x84\x84\x82\
\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\n\x1b\x8f\x03\
\x01\x01\x05J\x01\x8a\x01\x01\x01\x05H\x83\x82\x04\x01\x01\x01\x04\x04\x02\x00\x01\x01\
\x01\x00\x00\x00\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\x8a\x1b\x8f\x03\x01\x01\x05J\
\x01\x8a\x01\x01\x01\x05H\x83\x02\x04\x01\x01\x01\x04\x04\x02\x00\x01\x01\x01\x00\x00\x00\
\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\x8a\x9b\x8f\x03\x01\x01\x05J\x01\x8a\x01\x01\
\x01\x05H\x03B\x04\x01\x01\x01\x04\x04B\x00\x01\x01\x01\x00\x00\x00\x00\x01\x01\x01\x00\
\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\
\x07\x17A\xa820"
# Framebuf mapping is pixel 0 is in LS 2 bits
@micropython.viper
def _lmap(dest: ptr8, source: ptr8, pattern: int, length: int):
d: int = 0 # dest index
s: int = 0 # Source index
e: int = 0 # Current output byte (8 pixels of 1 bit)
t: int = 0 # Current input byte (4 pixels of 2 bits)
while d < length: # For each byte of o/p
e = 0
# Two sets of 4 pixels
for _ in range(2):
t = source[s]
for _ in range(4):
e |= (pattern >> (t & 3)) & 1
t >>= 2
e <<= 1
s += 1
dest[d] = e >> 1
d += 1
class EPD(framebuf.FrameBuffer):
MAXBLOCK = 25 # Max async blocking time in ms
# A monochrome approach should be used for coding this. The rgb method ensures
# nothing breaks if users specify colors.
@staticmethod
def rgb(r, g, b):
return min((r + g + b) >> 7, 3) # Greyscale in range 0 <= gs <= 3
def __init__(self, spi=None, cs=None, dc=None, rst=None, busy=None):
self._rst = Pin(_RST_PIN, Pin.OUT) if rst is None else rst
self._busy_pin = Pin(_BUSY_PIN, Pin.IN, Pin.PULL_UP) if busy is None else busy
self._cs = Pin(_CS_PIN, Pin.OUT) if cs is None else cs
self._dc = Pin(_DC_PIN, Pin.OUT) if dc is None else dc
self._spi = (
SPI(1, sck=Pin(10), mosi=Pin(11), miso=Pin(28)) if spi is None else spi
)
self._spi.init(baudrate=4_000_000)
# Busy flag: set immediately on .show(). Cleared when busy pin is logically false.
self._busy = False
# Async API
self.updated = asyncio.Event()
self.complete = asyncio.Event()
# Public bound variables required by nanogui.
# Dimensions in pixels as seen by nanogui
self.width = _EPD_WIDTH
self.height = _EPD_HEIGHT
# Other public bound variable.
# Special mode enables demos written for generic displays to run.
self.demo_mode = False
self._buf = bytearray(_EPD_HEIGHT * _BWIDTH)
self._mvb = memoryview(self._buf)
self._ibuf = bytearray(1000) # Buffer for inverted pixels
# Patterns for the two hardware buffers.
# LS 4 bits are o/p colors for white, grey1, grey2, black
self._patterns = (0b0101, 0b0011)
mode = framebuf.GS2_HMSB
self.palette = BoolPalette(mode) # Enable CWriter.
super().__init__(self._buf, _EPD_WIDTH, _EPD_HEIGHT, mode)
self.init()
time.sleep_ms(500)
# Hardware reset
def reset(self):
for v in (1, 0, 1):
self._rst(v)
time.sleep_ms(20)
def _command(self, command, data=None):
self._dc(0)
self._cs(0)
self._spi.write(command)
self._cs(1)
if data is not None:
self._data(data)
def _data(self, data):
self._dc(1)
self._cs(0)
self._spi.write(data)
self._cs(1)
def display_on(self):
self._command(b"\x22")
self._data(b"\xCF")
self._command(b"\x20")
def init(self):
self.reset() # hardware reset
self.wait_until_ready()
self._command(b"\x12") # software reset
self.wait_until_ready()
self._command(b"\x21") # Display update control
self._data(b"\x00")
self._data(b"\x00")
self._command(b"\x3C") # BorderWaveform
self._data(b"\x03")
self._command(b"\x11") # data entry mode
self._data(b"\x03") # X-mode
self._command(b"\x0C") # Boost soft start
self._data(b"\x8B")
self._data(b"\x9C")
self._data(b"\xA4")
self._data(b"\x0F")
self.set_grey()
self._set_window()
self._set_cursor()
self.wait_until_ready()
def set_grey(self):
lut_mv = memoryview(_LUT)
self._command(b"\x32")
self._data(bytes(lut_mv[0:227]))
self._command(b"\x3F")
self._data(bytes(lut_mv[227:228]))
self._command(b"\x03")
self._data(bytes(lut_mv[228:229]))
self._command(b"\x04")
self._data(bytes(lut_mv[229:232]))
self._command(b"\x2C")
self._data(bytes(lut_mv[232:233]))
def wait_until_ready(self):
while not self.ready():
time.sleep_ms(100)
def set_partial(self):
pass
def set_full(self):
pass
def ready(self):
return not (self._busy or self._busy_pin()) # 1 == busy
@micropython.native
def _bsend(self, start, pattern, nbytes): # Invert b<->w, buffer and send nbytes source bytes
buf = self._ibuf # Invert and buffer is done 32 bits at a time, hence >> 2
_lmap(buf, self._mvb[start:], pattern, nbytes) # Invert image data for EPD
self._dc(1)
self._cs(0)
self._spi.write(buf)
self._cs(1)
def _send_bytes(self, idx):
asyn = asyncio_running()
for _idx, pattern in enumerate(self._patterns):
if _idx != idx:
continue
fbidx = 0 # Index into framebuf
nbytes = len(self._ibuf) # Bytes to send
didx = nbytes * 2 # Increment of framebuf index
nleft = len(self._buf) # Size of framebuf
def inner():
nonlocal fbidx
nonlocal nbytes
nonlocal nleft
nonlocal didx
ts = time.ticks_ms() # Time of last yield
while nleft > 0:
self._bsend(fbidx, pattern, nbytes) # Grey-map, buffer and send nbytes
fbidx += didx # Adjust for bytes already sent
nleft -= didx
nbytes = min(nbytes, nleft)
if asyn and time.ticks_diff(time.ticks_ms(), ts) > EPD.MAXBLOCK:
return nbytes # Probably not all done; quit and call again
return 0 # All done
return inner
async def _as_show(self):
self._command(b"\x24")
sb = self._send_bytes(0) # Instantiate closure
while sb():
await asyncio.sleep_ms(0)
self._command(b"\x26")
sb = self._send_bytes(1) # Instantiate closure
while sb():
await asyncio.sleep_ms(0)
self.updated.set()
self.display_on()
while self._busy_pin():
await asyncio.sleep_ms(0)
self._busy = False
self.complete.set()
# Specific method for micro-gui. Unsuitable EPD's lack this method. Micro-gui
# does not test for asyncio as this is guaranteed to be up.
async def do_refresh(self, split=0):
assert not self._busy, "Refresh while busy"
await self._as_show()
def show(self):
if self._busy:
raise RuntimeError("Cannot refresh: display is busy.")
self._busy = True # Immediate busy flag. Pin goes low much later.
if asyncio_running():
self.updated.clear()
self.complete.clear()
asyncio.create_task(self._as_show())
return
self._command(b"\x24")
sb = self._send_bytes(0) # Instantiate closure
sb()
self._command(b"\x26")
sb = self._send_bytes(1) # Instantiate closure
sb()
self._busy = False
self.display_on()
if not self.demo_mode:
# Immediate return to avoid blocking the whole application.
# User should wait for ready before calling refresh()
return
self.wait_until_ready()
time.sleep_ms(2000) # Demo mode: give time for user to see result
def sleep(self):
self._command(b"\x10") # deep sleep
self._data(b"\x01")
# window and cursor always the same for 4.2"
def _set_window(self):
self._command(b"\x44")
self._data(b"\x00")
self._data(b"\x31")
self._command(b"\x45")
self._data(b"\x00")
self._data(b"\x00")
self._data(b"\x2B")
self._data(b"\x01")
def _set_cursor(self):
self._command(b"\x4E")
self._data(b"\x00")
self._command(b"\x4F")
self._data(b"\x00")
self._data(b"\x00")