epaper/pico_epaper_42.py: Simplify code.

encoder_driver
peterhinch 2023-05-20 18:15:59 +01:00
rodzic 3de3a8cec8
commit 2c10ca4418
1 zmienionych plików z 139 dodań i 166 usunięć

Wyświetl plik

@ -2,7 +2,7 @@
# ePaper 4.2" display. This version fixes bugs and supports partial updates. # ePaper 4.2" display. This version fixes bugs and supports partial updates.
# https://github.com/peterhinch/micropython-nano-gui/blob/master/drivers/epaper/pico_epaper_42.py # https://github.com/peterhinch/micropython-nano-gui/blob/master/drivers/epaper/pico_epaper_42.py
# Adapted from the Waveshare driver by Peter Hinch Sept 2022-March 2023. # Adapted from the Waveshare driver by Peter Hinch Sept 2022-May 2023.
# https://www.waveshare.com/pico-epaper-4.2.htm # https://www.waveshare.com/pico-epaper-4.2.htm
# UC8176 manual https://www.waveshare.com/w/upload/8/88/UC8176.pdf # UC8176 manual https://www.waveshare.com/w/upload/8/88/UC8176.pdf
# Waveshare's copy of this driver. # Waveshare's copy of this driver.
@ -45,65 +45,76 @@ import time
import uasyncio as asyncio import uasyncio as asyncio
from drivers.boolpalette import BoolPalette from drivers.boolpalette import BoolPalette
def asyncio_running():
try:
_ = asyncio.current_task()
except:
return False
return True
# Display resolution # Display resolution
_EPD_WIDTH = const(400) _EPD_WIDTH = const(400)
_BWIDTH = _EPD_WIDTH // 8 _BWIDTH = _EPD_WIDTH // 8
_EPD_HEIGHT = const(300) _EPD_HEIGHT = const(300)
RST_PIN = 12 _RST_PIN = const(12) # Rear socket pinout
DC_PIN = 8 _DC_PIN = const(8)
CS_PIN = 9 _CS_PIN = const(9)
BUSY_PIN = 13 _BUSY_PIN = const(13)
EPD_lut_vcom0 = b"\x00\x08\x08\x00\x00\x02\x00\x0F\x0F\x00\x00\x01\x00\x08\x08\x00\ # LUT elements vcom, ww, bw, wb, bb
# ****************************** full screen update LUT********************************* #
lut_full = (b"\x00\x08\x08\x00\x00\x02\x00\x0F\x0F\x00\x00\x01\x00\x08\x08\x00\
\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00" \x00\x00\x00\x00\x00\x00",
b"\x50\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\xA0\x08\x08\x00\x00\x02\
EPD_lut_ww = b"\x50\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\xA0\x08\x08\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x50\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\xA0\x08\x08\x00\x00\x02\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
EPD_lut_bw = b"\x50\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\xA0\x08\x08\x00\x00\x02\ b"\xA0\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\x50\x08\x08\x00\x00\x02\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
b"\x20\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\x10\x08\x08\x00\x00\x02\
EPD_lut_wb = b"\xA0\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\x50\x08\x08\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" )
EPD_lut_bb = b"\x20\x08\x08\x00\x00\x02\x90\x0F\x0F\x00\x00\x01\x10\x08\x08\x00\x00\x02\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
# ******************************partial screen update LUT********************************* # # ******************************partial screen update LUT********************************* #
EPD_partial_lut_vcom1 = b"\x00\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ lut_part = (
b"\x00\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00" \x00\x00\x00\x00\x00\x00",
b"\x00\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
EPD_partial_lut_ww1 = b"\x00\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00" \x00\x00\x00\x00",
b"\x80\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
EPD_partial_lut_bw1 =b"\x80\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00" \x00\x00\x00\x00",
b"\x40\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
EPD_partial_lut_wb1 = b"\x40\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00" \x00\x00\x00\x00",
b"\x00\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
EPD_partial_lut_bb1 = b"\x00\x19\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00" \x00\x00\x00\x00",
)
# [index into LUT, register address]. Design allows for repeats as per greyscale driver.
lut_map = ((0, b"\x20"), (1, b"\x21"), (2, b"\x22"), (3, b"\x23"), (4, b"\x24"))
# Invert: EPD is black on white # Invert: EPD is black on white
# 337/141 us for 2000 bytes (125/250MHz) # 337/141 us for 2000 bytes (125/250MHz)
@micropython.viper @micropython.viper
def _linv(dest:ptr32, source:ptr32, length:int): def _linv(dest: ptr32, source: ptr32, length: int):
n: int = length-1 n: int = length - 1
z: uint32 = int(0xFFFFFFFF) z: uint32 = int(0xFFFFFFFF)
while n >= 0: while n >= 0:
dest[n] = source[n] ^ z dest[n] = source[n] ^ z
n -= 1 n -= 1
class EPD(framebuf.FrameBuffer): class EPD(framebuf.FrameBuffer):
# A monochrome approach should be used for coding this. The rgb method ensures # A monochrome approach should be used for coding this. The rgb method ensures
# nothing breaks if users specify colors. # nothing breaks if users specify colors.
@ -111,156 +122,109 @@ class EPD(framebuf.FrameBuffer):
def rgb(r, g, b): def rgb(r, g, b):
return int((r > 127) or (g > 127) or (b > 127)) return int((r > 127) or (g > 127) or (b > 127))
# Discard asyn: autodetect
def __init__(self, spi=None, cs=None, dc=None, rst=None, busy=None, asyn=False): def __init__(self, spi=None, cs=None, dc=None, rst=None, busy=None, asyn=False):
self.reset_pin = Pin(RST_PIN, Pin.OUT) if rst is None else rst self._rst = Pin(_RST_PIN, Pin.OUT) if rst is None else rst
self.busy_pin = Pin(BUSY_PIN, Pin.IN, Pin.PULL_UP) if busy is None else busy self._busy_pin = Pin(_BUSY_PIN, Pin.IN, Pin.PULL_UP) if busy is None else busy
self.cs_pin = Pin(CS_PIN, Pin.OUT) if cs is None else cs self._cs = Pin(_CS_PIN, Pin.OUT) if cs is None else cs
self.dc_pin = Pin(DC_PIN, Pin.OUT) if dc is None else dc self._dc = Pin(_DC_PIN, Pin.OUT) if dc is None else dc
self.spi = SPI(1, sck = Pin(10), mosi = Pin(11), miso = Pin(28)) if spi is None else spi self._spi = SPI(1, sck=Pin(10), mosi=Pin(11), miso=Pin(28)) if spi is None else spi
self.spi.init(baudrate = 4_000_000) self._spi.init(baudrate=10_000_000) # Datasheet limit 10MHz
self._asyn = asyn # Busy flag: set immediately on .show(). Cleared when busy pin is logically false.
self._busy = False # Set immediately on .show(). Cleared when busy pin is logically false (physically 1). self._busy = False
self._updated = asyncio.Event() # Async API
self.updated = asyncio.Event()
self.complete = asyncio.Event()
# Public bound variables required by nanogui.
# Dimensions in pixels as seen by nanogui
self.width = _EPD_WIDTH self.width = _EPD_WIDTH
self.height = _EPD_HEIGHT self.height = _EPD_HEIGHT
self.buf = bytearray(_EPD_HEIGHT * _BWIDTH) # Other public bound variable.
self.mvb = memoryview(self.buf) # Special mode enables demos written for generic displays to run.
self.ibuf = bytearray(1000) # Buffer for inverted pixels self.demo_mode = False
self._buf = bytearray(_EPD_HEIGHT * _BWIDTH)
self._mvb = memoryview(self._buf)
self._ibuf = bytearray(1000) # Buffer for inverted pixels
mode = framebuf.MONO_HLSB mode = framebuf.MONO_HLSB
self.palette = BoolPalette(mode) self.palette = BoolPalette(mode) # Enable CWriter.
super().__init__(self.buf, _EPD_WIDTH, _EPD_HEIGHT, mode) super().__init__(self._buf, _EPD_WIDTH, _EPD_HEIGHT, mode)
self.init() self.init()
time.sleep_ms(500) time.sleep_ms(500)
# Hardware reset # Hardware reset
def reset(self): def reset(self):
for v in (1, 0, 1): for v in (1, 0, 1):
self.reset_pin(v) self._rst(v)
time.sleep_ms(20) time.sleep_ms(20)
def send_command(self, command): def _command(self, command, data=None):
self.dc_pin(0) self._dc(0)
self.cs_pin(0) self._cs(0)
self.spi.write(command) self._spi.write(command)
self.cs_pin(1) self._cs(1)
if data is not None:
self._data(data)
def send_bytes(self, data): # Datasheet P26 seems to mandate CS False after each byte. Ugh.
self.dc_pin(1) def _data(self, data, buf1=bytearray(1)):
self.cs_pin(0) self._dc(1)
self.spi.write(data) for b in data:
self.cs_pin(1) self._cs(0)
buf1[0] = b
self._spi.write(buf1)
self._cs(1)
def display_on(self): def display_on(self):
self.send_command(b"\x12") self._command(b"\x12")
time.sleep_ms(100) time.sleep_ms(100)
self.wait_until_ready() self.wait_until_ready()
def init(self): def init(self):
self.reset() self.reset()
self.send_command(b"\x01") # POWER SETTING cmd = self._command
self.send_bytes(b"\x03") cmd(b"\x01", b"\x03\x00\x2b\x2b")
self.send_bytes(b"\x00") # Booster soft start. Matches datasheet.
self.send_bytes(b"\x2b") cmd(b"\x06", b"\x17\x17\x17")
self.send_bytes(b"\x2b") cmd(b"\x04") # Power on
self.send_command(b"\x06") # boost soft start
self.send_bytes(b"\x17") # A
self.send_bytes(b"\x17") # B
self.send_bytes(b"\x17") # C
self.send_command(b"\x04") # POWER_ON
self.wait_until_ready() self.wait_until_ready()
cmd(b"\x00", b"\xbf") # panel setting
self.send_command(b"\x00") # panel setting cmd(b"\x30", b"\x3c") # PLL setting
self.send_bytes(b"\xbf") # KW-BF KWR-AF BWROTP 0f BWOTP 1f cmd(b"\x61", b"\x01\x90\x01\x2C") # resolution setting
self.send_bytes(b"\x0d") cmd(b"\x82", b"\x28") # vcom_DC setting
cmd(b"\x50", b"\x97") # VCOM AND DATA INTERVAL SETTING
self.send_command(b"\x30") # PLL setting # 97white border 77black border VBDF 17|D7 VBDW 97 VBDB 57 VBDF F7 VBDW 77 VBDB 37 VBDR B7
self.send_bytes(b"\x3C") # 3A 100HZ 29 150Hz 39 200HZ 31 171HZ
self.send_command(b"\x61") # resolution setting
self.send_bytes(b"\x01")
self.send_bytes(b"\x90") # 128
self.send_bytes(b"\x01")
self.send_bytes(b"\x2c")
self.send_command(b"\x82") # vcom_DC setting
self.send_bytes(b"\x28")
self.send_command(b"\x50") # VCOM AND DATA INTERVAL SETTING
self.send_bytes(b"\x97") # 97white border 77black border VBDF 17|D7 VBDW 97 VBDB 57 VBDF F7 VBDW 77 VBDB 37 VBDR B7
self.set_full() self.set_full()
# Clear display
self.send_command(b"\x10")
for j in range(_EPD_HEIGHT):
self.send_bytes(b"\xff" * _BWIDTH)
self.send_command(b"\x13")
for j in range(_EPD_HEIGHT):
self.send_bytes(b"\xff" * _BWIDTH)
self.send_command(b"\x12") def send_lut(self, lm, lut):
time.sleep_ms(10) for idx, reg in lm:
self.display_on() self._command(reg, lut[idx])
def set_full(self): # Normal full updates def set_full(self): # Normal full updates
self.send_command(b"\x20") self.send_lut(lut_map, lut_full)
self.send_bytes(EPD_lut_vcom0)
self.send_command(b"\x21")
self.send_bytes(EPD_lut_ww)
self.send_command(b"\x22")
self.send_bytes(EPD_lut_bw)
self.send_command(b"\x23")
self.send_bytes(EPD_lut_wb)
self.send_command(b"\x24")
self.send_bytes(EPD_lut_bb)
def set_partial(self): # Partial updates def set_partial(self): # Partial updates
self.send_command(b"\x20") self.send_lut(lut_map, lut_part)
self.send_bytes(EPD_partial_lut_vcom1)
self.send_command(b"\x21")
self.send_bytes(EPD_partial_lut_ww1)
self.send_command(b"\x22")
self.send_bytes(EPD_partial_lut_bw1)
self.send_command(b"\x23")
self.send_bytes(EPD_partial_lut_wb1)
self.send_command(b"\x24")
self.send_bytes(EPD_partial_lut_bb1)
def wait_until_ready(self): def wait_until_ready(self):
while not self.ready(): while not self.ready():
time.sleep_ms(100) time.sleep_ms(100)
async def wait(self):
while not self.ready():
await asyncio.sleep_ms(100)
# Pause until framebuf has been copied to device.
async def updated(self):
self._updated.clear()
await self._updated.wait()
self._updated.clear()
# For polling in asynchronous code. Just checks pin state. # For polling in asynchronous code. Just checks pin state.
# 0 == busy. Comment in official code is wrong. Code is correct. # 0 == busy. Comment in official code is wrong. Code is correct.
def ready(self): def ready(self):
return not (self._busy or (self.busy_pin() == 0)) # 0 == busy return not (self._busy or (self._busy_pin() == 0)) # 0 == busy
@micropython.native @micropython.native
def _bsend(self, start, nbytes): def _bsend(self, start, nbytes): # Invert b<->w, buffer and send nbytes source bytes
buf = self.ibuf buf = self._ibuf # Invert and buffer is done 32 bits at a time, hence >> 2
_linv(buf, self.mvb[start:], nbytes >> 2) # Invert image data for EPD _linv(buf, self._mvb[start:], nbytes >> 2)
self.send_bytes(buf) self._dc(1)
self._cs(0)
self._spi.write(buf)
self._cs(1)
# Time to convert and transmit 1000 bytes ~ 1ms: most of that is tx @ 10MHz # Time to convert and transmit 1000 bytes ~ 1ms: most of that is tx @ 10MHz
# Yield every 16 transfers means blocking is ~16ms # Yield every 16 transfers means blocking is ~16ms
@ -268,10 +232,10 @@ class EPD(framebuf.FrameBuffer):
# Timing @10MHz/250MHz: full refresh 2.1s, partial 740ms: the bulk of the time # Timing @10MHz/250MHz: full refresh 2.1s, partial 740ms: the bulk of the time
# is spent spinning on the busy pin and is CPU frequency independent. # is spent spinning on the busy pin and is CPU frequency independent.
async def _as_show(self): async def _as_show(self):
self.send_command(b"\x13") self._command(b"\x13")
fbidx = 0 # Index into framebuf fbidx = 0 # Index into framebuf
nbytes = len(self.ibuf) # Bytes to send nbytes = len(self._ibuf) # Bytes to send
nleft = len(self.buf) # Size of framebuf nleft = len(self._buf) # Size of framebuf
npass = 0 npass = 0
while nleft > 0: while nleft > 0:
self._bsend(fbidx, nbytes) # Invert, buffer and send nbytes self._bsend(fbidx, nbytes) # Invert, buffer and send nbytes
@ -280,27 +244,32 @@ class EPD(framebuf.FrameBuffer):
nbytes = min(nbytes, nleft) nbytes = min(nbytes, nleft)
if not ((npass := npass + 1) % 16): if not ((npass := npass + 1) % 16):
await asyncio.sleep_ms(0) # Control blocking time await asyncio.sleep_ms(0) # Control blocking time
self._updated.set() self.updated.set()
self.send_command(b"\x12") # Nonblocking .display_on() self._command(b"\x12") # Nonblocking .display_on()
while not self.busy_pin(): # Wait on display hardware while not self._busy_pin(): # Wait on display hardware
await asyncio.sleep_ms(0) await asyncio.sleep_ms(0)
self._busy = False self._busy = False
self.complete.set()
async def do_refresh(self, split): # For micro-gui # Specific method for micro-gui. Unsuitable EPD's lack this method. Micro-gui
assert (not self._busy), "Refresh while busy" # does not test for asyncio as this is guaranteed to be up.
async def do_refresh(self, split):
assert not self._busy, "Refresh while busy"
await self._as_show() # split=5 await self._as_show() # split=5
def show(self): # nanogui def show(self): # nanogui
if self._busy: if self._busy:
raise RuntimeError('Cannot refresh: display is busy.') raise RuntimeError("Cannot refresh: display is busy.")
self._busy = True # Immediate busy flag. Pin goes low much later. self._busy = True # Immediate busy flag. Pin goes low much later.
if self._asyn: if asyncio_running():
self.updated.clear()
self.complete.clear()
asyncio.create_task(self._as_show()) asyncio.create_task(self._as_show())
return return
self.send_command(b"\x13") self._command(b"\x13")
fbidx = 0 # Index into framebuf fbidx = 0 # Index into framebuf
nbytes = len(self.ibuf) # Bytes to send nbytes = len(self._ibuf) # Bytes to send
nleft = len(self.buf) # Size of framebuf nleft = len(self._buf) # Size of framebuf
while nleft > 0: while nleft > 0:
self._bsend(fbidx, nbytes) # Invert, buffer and send nbytes self._bsend(fbidx, nbytes) # Invert, buffer and send nbytes
fbidx += nbytes # Adjust for bytes already sent fbidx += nbytes # Adjust for bytes already sent
@ -308,10 +277,14 @@ class EPD(framebuf.FrameBuffer):
nbytes = min(nbytes, nleft) nbytes = min(nbytes, nleft)
self._busy = False self._busy = False
self.display_on() self.display_on()
if not self.demo_mode:
# Immediate return to avoid blocking the whole application.
# User should wait for ready before calling refresh()
return
self.wait_until_ready() self.wait_until_ready()
time.sleep_ms(2000) # Demo mode: give time for user to see result
def sleep(self): def sleep(self):
# self.send_command(b"\x02") # power off # self._command(b"\x02") # power off
# self.wait_until_ready() # self.wait_until_ready()
self.send_command(b"\x07") # deep sleep self._command(b"\x07", b"\xA5") # deep sleep
self.send_bytes(b"\xA5")