micropython-micro-gui/drivers/epaper/pico_epaper_42_v2.py

362 wiersze
12 KiB
Python
Czysty Zwykły widok Historia

# pico_epaper_42_v2.py
# Materials used for discovery can be found here
# Main page: https://www.waveshare.com/pico-epaper-4.2.htm
# Wiki: https://www.waveshare.com/wiki/Pico-ePaper-4.2
# Note, at the time of writing this, none of the source materials have working
# code that works with partial refresh, as the C code has a bug and all the other
# materials use that reference material as the source of truth.
# *****************************************************************************
# * | File : pico_epaper_42_v2.py
# * | Author : michael surdouski
# * | Function : Electronic paper driver
# *----------------
# * | This version: rev2.2
# * | Date : 2024-05-22
# -----------------------------------------------------------------------------
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documnetation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# Waveshare URLs
# Main page: https://www.waveshare.com/pico-epaper-4.2.htm
# Wiki: https://www.waveshare.com/wiki/Pico-ePaper-4.2
# The warnings in the following seem to be needlessly alarmist. This display
# was run for 2000 hours using partial refresh only, once per second, with no
# evidence of deterioration. Ghosting was minimal, and entirely cleared with a full
# refresh when the test was terminated.
# Another wiki: https://www.waveshare.com/wiki/4.2inch_e-Paper_Module_Manual#Introduction
# Code: https://github.com/waveshareteam/Pico_ePaper_Code/blob/main/python/Pico-ePaper-4.2_V2.py
2024-10-12 09:26:30 +00:00
# Chip appears to be SSD1683.
from machine import Pin, SPI
import framebuf
import time
import asyncio
from drivers.boolpalette import BoolPalette
def asyncio_running():
try:
_ = asyncio.current_task()
except:
return False
return True
# Display resolution
_EPD_WIDTH = const(400)
_BWIDTH = _EPD_WIDTH // 8
_EPD_HEIGHT = const(300)
_RST_PIN = 12 # Pin defaults match wiring of Pico socket
_DC_PIN = 8
_CS_PIN = 9
_BUSY_PIN = 13
# Invert: EPD is black on white
# 337/141 us for 2000 bytes (125/250MHz)
@micropython.viper
def _linv(dest: ptr32, source: ptr32, length: int):
n: int = length - 1
z: uint32 = int(0xFFFFFFFF)
while n >= 0:
dest[n] = source[n] ^ z
n -= 1
class EPD(framebuf.FrameBuffer):
# A monochrome approach should be used for coding this. The rgb method ensures
# nothing breaks if users specify colors.
@staticmethod
def rgb(r, g, b):
return int((r > 127) or (g > 127) or (b > 127))
def __init__(self, spi=None, cs=None, dc=None, rst=None, busy=None):
self._rst = Pin(_RST_PIN, Pin.OUT) if rst is None else rst
self._busy_pin = Pin(_BUSY_PIN, Pin.IN, Pin.PULL_UP) if busy is None else busy
self._cs = Pin(_CS_PIN, Pin.OUT) if cs is None else cs
self._dc = Pin(_DC_PIN, Pin.OUT) if dc is None else dc
self._spi = SPI(1, sck=Pin(10), mosi=Pin(11), miso=Pin(28)) if spi is None else spi
self._spi.init(baudrate=4_000_000)
# Busy flag: set immediately on .show(). Cleared when busy pin is logically false.
self._busy = False
# Async API
self.updated = asyncio.Event()
self.complete = asyncio.Event()
self.maxblock = 25
# partial refresh
self._partial = False
# Public bound variables required by nanogui.
# Dimensions in pixels as seen by nanogui
self.width = _EPD_WIDTH
self.height = _EPD_HEIGHT
# Other public bound variable.
# Special mode enables demos written for generic displays to run.
self.demo_mode = False
self.blank_on_exit = True
self._buf = bytearray(_EPD_HEIGHT * _BWIDTH)
self._mvb = memoryview(self._buf)
self._ibuf = bytearray(1000) # Buffer for inverted pixels
mode = framebuf.MONO_HLSB
self.palette = BoolPalette(mode) # Enable CWriter.
super().__init__(self._buf, _EPD_WIDTH, _EPD_HEIGHT, mode)
self.init()
time.sleep_ms(500)
# Hardware reset
def reset(self):
for v in (1, 0, 1):
self._rst(v)
time.sleep_ms(20)
def _command(self, command, data=None):
self._dc(0)
self._cs(0)
self._spi.write(command)
self._cs(1)
if data is not None:
self._data(data)
def _data(self, data):
self._dc(1)
self._cs(0)
self._spi.write(data)
self._cs(1)
def _display_on(self):
if self._partial:
self._command(b"\x22")
self._data(b"\xFF")
self._command(b"\x20")
else:
self._command(b"\x22")
self._data(b"\xF7")
self._command(b"\x20")
# Called by constructor. Application use is deprecated.
def init(self):
self.reset() # hardware reset
self._command(b"\x12") # software reset
self.wait_until_ready()
self.set_full()
self._display_on()
# Common API
def set_full(self):
self._partial = False
self._command(b"\x21") # Display update control
self._data(b"\x40")
self._data(b"\x00")
self._command(b"\x3C") # BorderWaveform
self._data(b"\x05")
self._command(b"\x11") # data entry mode
self._data(b"\x03") # X-mode
self._set_window()
self._set_cursor()
self.wait_until_ready()
def set_partial(self):
self._partial = True
self._command(b"\x21") # Display update control
self._data(b"\x00")
self._data(b"\x00")
self._command(b"\x3C") # BorderWaveform
self._data(b"\x80")
self._command(b"\x11") # data entry mode
self._data(b"\x03") # X-mode
self._set_window()
self._set_cursor()
self.wait_until_ready()
@micropython.native
def _bsend(self, start, nbytes): # Invert b<->w, buffer and send nbytes source bytes
buf = self._ibuf # Invert and buffer is done 32 bits at a time, hence >> 2
_linv(buf, self._mvb[start:], nbytes >> 2)
self._dc(1)
self._cs(0)
self._spi.write(buf)
self._cs(1)
# Send the frame buffer. If running asyncio, return whenever MAXBLOCK ms elapses
# so that caller can yield to the scheduler.
# Returns no. of bytes outstanding.
def _send_bytes(self):
fbidx = 0 # Index into framebuf
nbytes = len(self._ibuf) # Bytes to send
nleft = len(self._buf) # Size of framebuf
asyn = asyncio_running()
def inner():
nonlocal fbidx
nonlocal nbytes
nonlocal nleft
ts = time.ticks_ms()
while nleft > 0:
self._bsend(fbidx, nbytes) # Invert, buffer and send nbytes
fbidx += nbytes # Adjust for bytes already sent
nleft -= nbytes
nbytes = min(nbytes, nleft)
if asyn and time.ticks_diff(time.ticks_ms(), ts) > self.maxblock:
return nbytes # Probably not all done; quit. Caller yields, calls again
return 0 # All done
return inner
# micro-gui API; asyncio is running.
async def do_refresh(self, split=0): # split = 5
assert not self._busy, "Refresh while busy"
if self._partial:
await self._as_show_partial()
else:
await self._as_show_full()
def shutdown(self, clear=False):
time.sleep(1) # Empirically necessary (ugh)
self.fill(0)
self.set_full()
if clear or self.blank_on_exit:
self.show()
self.wait_until_ready()
self.sleep()
# nanogui API
def show(self):
if self._busy:
raise RuntimeError("Cannot refresh: display is busy.")
if self._partial:
self._show_partial()
else:
self._show_full()
if not self.demo_mode:
# Immediate return to avoid blocking the whole application.
# User should wait for ready before calling refresh()
return
self.wait_until_ready()
time.sleep_ms(2000) # Demo mode: give time for user to see result
def _show_full(self):
self._busy = True # Immediate busy flag. Pin goes low much later.
if asyncio_running():
self.updated.clear()
self.complete.clear()
asyncio.create_task(self._as_show_full())
return
# asyncio is not running, hence sb() will not time out.
self._command(b"\x24")
sb = self._send_bytes() # Instantiate closure
sb() # Run to completion
self._command(b"\x26")
sb = self._send_bytes() # Create new instance
sb()
self._busy = False
self._display_on()
async def _as_show_full(self):
self._command(b"\x24")
sb = self._send_bytes() # Instantiate closure
while sb():
await asyncio.sleep_ms(0) # Timed out. Yield and continue.
self._command(b"\x26")
sb = self._send_bytes() # New closure instance
while sb():
await asyncio.sleep_ms(0)
self.updated.set()
self._display_on()
while self._busy_pin():
await asyncio.sleep_ms(0)
self._busy = False
self.complete.set()
def _show_partial(self):
self._busy = True
if asyncio_running():
self.updated.clear()
self.complete.clear()
asyncio.create_task(self._as_show_partial())
return
self._command(b"\x24")
sb = self._send_bytes() # Instantiate closure
sb()
self._busy = False
self._display_on()
async def _as_show_partial(self):
self._command(b"\x24")
sb = self._send_bytes() # Instantiate closure
while sb():
await asyncio.sleep_ms(0)
self.updated.set()
self._display_on()
while self._busy_pin():
await asyncio.sleep_ms(0)
self._busy = False
self.complete.set()
# nanogui API
def wait_until_ready(self):
while not self.ready():
time.sleep_ms(100)
def ready(self):
return not (self._busy or self._busy_pin()) # 1 == busy
def sleep(self):
self._command(b"\x10") # deep sleep
self._data(b"\x01")
# window and cursor always the same for 4.2"
def _set_window(self):
self._command(b"\x44")
self._data(b"\x00")
self._data(b"\x31")
self._command(b"\x45")
self._data(b"\x00")
self._data(b"\x00")
self._data(b"\x2B")
self._data(b"\x01")
def _set_cursor(self):
self._command(b"\x4E")
self._data(b"\x00")
self._command(b"\x4F")
self._data(b"\x00")
self._data(b"\x00")