libdspl-2.0/dspl/src/math_ellipj/ellip_acd_cmplx.c

152 wiersze
5.0 KiB
C
Czysty Wina Historia

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright (c) 2015-2019 Sergey Bakhurin
* Digital Signal Processing Library [http://dsplib.org]
*
* This file is part of DSPL.
*
* is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DSPL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "dspl.h"
#ifdef DOXYGEN_ENGLISH
/*! ****************************************************************************
\ingroup SPEC_MATH_ELLIP_GROUP
\fn int ellip_acd_cmplx(complex_t* w, int n, double k, complex_t* u)
\brief Inverse Jacobi elliptic function \f$ u = \textrm{cd}^{-1}(w, k)\f$
of complex vector argument
Function calculates inverse Jacobi elliptic function
\f$ u = \textrm{cd}^{-1}(w, k)\f$ of complex vector `w`. \n
\param[in] w
Pointer to the argument vector \f$ w \f$. \n
Vector size is `[n x 1]`. \n
Memory must be allocated. \n \n
\param[in] n
Size of vector `w`. \n \n
\param[in] k
Elliptical modulus \f$ k \f$. \n
Elliptical modulus is real parameter,
which values can be from 0 to 1. \n \n
\param[out] u
Pointer to the vector of inverse Jacobi elliptic function
\f$ u = \textrm{cd}^{-1}(w, k)\f$. \n
Vector size is `[n x 1]`. \n
Memory must be allocated. \n \n
\return
`RES_OK` successful exit, else \ref ERROR_CODE_GROUP "error code". \n
\author Sergey Bakhurin www.dsplib.org
***************************************************************************** */
#endif
#ifdef DOXYGEN_RUSSIAN
/*! ****************************************************************************
\ingroup SPEC_MATH_ELLIP_GROUP
\fn int ellip_acd_cmplx(complex_t* w, int n, double k, complex_t* u)
\brief Обратная эллиптическая функция Якоби
\f$ u = \textrm{cd}^{-1}(w, k)\f$ комплексного аргумента
Функция рассчитывает значения значения обратной эллиптической функции
\f$ u = \textrm{cd}^{-1}(w, k)\f$ для комплексного вектора `w`. \n
Для расчета используется итерационный алгоритм на основе преобразования
Ландена. \n
\param[in] w
Указатель на массив вектора переменной \f$ w \f$. \n
Размер вектора `[n x 1]`. \n
Память должна быть выделена. \n \n
\param[in] n
Размер вектора `w`. \n \n
\param[in] k
Значение эллиптического модуля \f$ k \f$. \n
Эллиптический модуль -- вещественный параметр,
принимающий значения от 0 до 1. \n \n
\param[out] u
Указатель на вектор значений обратной эллиптической
функции \f$ u = \textrm{cd}^{-1}(w, k)\f$. \n
Размер вектора `[n x 1]`. \n
Память должна быть выделена. \n \n
\return
`RES_OK` Расчет произведен успешно. \n
В противном случае \ref ERROR_CODE_GROUP "код ошибки". \n
\author Бахурин Сергей www.dsplib.org
***************************************************************************** */
#endif
int DSPL_API ellip_acd_cmplx(complex_t* w, int n, double k, complex_t* u)
{
double lnd[ELLIP_ITER], t;
complex_t tmp0, tmp1;
int i, m;
if(!u || !w)
return ERROR_PTR;
if(n<1)
return ERROR_SIZE;
if(k < 0.0 || k>= 1.0)
return ERROR_ELLIP_MODULE;
ellip_landen(k,ELLIP_ITER, lnd);
for(m = 0; m < n; m++)
{
RE(u[m]) = RE(w[m]);
IM(u[m]) = IM(w[m]);
for(i = 1; i < ELLIP_ITER; i++)
{
RE(tmp0) = lnd[i-1]*RE(u[m]);
IM(tmp0) = lnd[i-1]*IM(u[m]);
RE(tmp1) = 1.0 - CMRE(tmp0, tmp0);
IM(tmp1) = - CMIM(tmp0, tmp0);
sqrt_cmplx(&tmp1, 1, &tmp0);
RE(tmp0) += 1.0;
RE(tmp1) = RE(tmp0) * (1.0 + lnd[i]);
IM(tmp1) = IM(tmp0) * (1.0 + lnd[i]);
t = 2.0 / ABSSQR(tmp1);
RE(tmp0) = t * CMCONJRE(u[m], tmp1);
IM(tmp0) = t * CMCONJIM(u[m], tmp1);
RE(u[m]) = RE(tmp0);
IM(u[m]) = IM(tmp0);
}
acos_cmplx(&tmp0, 1, u+m);
t = 2.0 / M_PI;
RE(u[m]) *= t;
IM(u[m]) *= t;
}
return RES_OK;
}