kopia lustrzana https://github.com/animator/learn-python
1.2 KiB
1.2 KiB
Numpy Array Shape and Reshape
In NumPy, the primary data structure is the ndarray (N-dimensional array). An array can have one or more dimensions, and it organizes your data efficiently.
Let us create a 2D array
import numpy as np
numbers = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(numbers)
Output:
array([[1, 2, 3, 4],[5, 6, 7, 8]])
Changing Array Shape using reshape()
The reshape()
function allows you to rearrange the data within a NumPy array.
It take 2 arguments, row and columns. The reshape()
can add or remove the dimensions. For instance, array can convert a 1D array into a 2D array or vice versa.
arr_1d = np.array([1, 2, 3, 4, 5, 6]) # 1D array
arr_2d = arr_1d.reshape(2, 3) # Reshaping with 2 rows and 3 cols
print(arr_2d)
Output:
array([[1, 2, 3],[4, 5, 6]])
Changing Array Shape using resize()
The resize()
function allows you to modify the shape of a NumPy array directly.
It take 2 arguements, row and columns.
import numpy as np
arr_1d = np.array([1, 2, 3, 4, 5, 6])
arr_1d.resize((2, 3)) # 2 rows and 3 cols
print(arr_1d)
Output:
array([[1, 2, 3],[4, 5, 6]])