learn-python/contrib/pandas/excel_with_pandas.md

64 wiersze
2.0 KiB
Markdown
Czysty Wina Historia

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

# Pandas DataFrame
The Pandas DataFrame is a two-dimensional, size-mutable, and possibly heterogeneous tabular data format with labelled axes. A data frame is a two-dimensional data structure in which the data can be organised in rows and columns. Pandas DataFrames are comprised of three main components: data, rows, and columns.
In the real world, Pandas DataFrames are formed by importing datasets from existing storage, which can be a Excel file, a SQL database or CSV file. Pandas DataFrames may be constructed from lists, dictionaries, or lists of dictionaries, etc.
Features of Pandas `DataFrame`:
- **Size mutable**: DataFrames are mutable in size, meaning that new rows and columns can be added or removed as needed.
- **Labeled axes**: DataFrames have labeled axes, which makes it easy to keep track of the data.
- **Arithmetic operations**: DataFrames support arithmetic operations on rows and columns.
- **High performance**: DataFrames are highly performant, making them ideal for working with large datasets.
### Installation of libraries
`pip install pandas` <br/>
`pip install xlrd`
- **Note**: The `xlrd` library is used for Excel operations.
Example for reading data from an Excel File:
```python
import pandas as pd
l = pd.read_excel('example.xlsx')
d = pd.DataFrame(l)
print(d)
```
Output:
```python
Name Age
0 John 12
```
Example for Inserting Data into Excel File:
```python
import pandas as pd
l = pd.read_excel('file_name.xlsx')
d = {'Name': ['Bob', 'John'], 'Age': [12, 28]}
d = pd.DataFrame(d)
L = pd.concat([l, d], ignore_index = True)
L.to_excel('file_name.xlsx', index = False)
print(L)
```
Output:
```python
Name Age
0 Bob 12
1 John 28
```
### Usage of Pandas DataFrame:
- Can be used to store and analyze financial data, such as stock prices, trading data, and economic data.
- Can be used to store and analyze sensor data, such as data from temperature sensors, motion sensors, and GPS sensors.
- Can be used to store and analyze log data, such as web server logs, application logs, and system logs