Update and rename pandas_series.md to pandas-series.md

pull/1100/head
Ashita Prasad 2024-06-23 12:50:58 +05:30 zatwierdzone przez GitHub
rodzic 4916b99a3a
commit f1c00b3443
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 54 dodań i 36 usunięć

Wyświetl plik

@ -1,7 +1,6 @@
# Pandas Series
A series is a Panda data structures that represents a one dimensional array-like object containing an array of data and an associated array of data type labels, called index.
A series is a Panda data structures that represents a one dimensional array-like object containing an array of data and an associated array of data type labels, called index.
## Creating a Series object:
@ -14,8 +13,9 @@ import pandas as pd
s1 = pd.Series([4, 5, 2, 3])
print(s1)
```
#### Output
```
Output:
0 4
1 5
2 2
@ -32,8 +32,9 @@ import pandas as pd
s2 = pd.Series({'A': 1, 'B': 2, 'C': 3})
print(s2)
```
#### Output
```
Output:
A 1
B 2
C 3
@ -52,8 +53,9 @@ import pandas as pd
s4 = pd.Series([1, 2, 3], index=['a', 'b', 'c'], dtype='float64')
print(s4)
```
#### Output
```
Output:
a 1.0
b 2.0
c 3.0
@ -69,8 +71,9 @@ import pandas as pd
s3=pd.Series([1,np.Nan,2])
print(s3)
```
#### Output
```
Output:
0 1.0
1 NaN
2 2.0
@ -89,8 +92,9 @@ a=np.arange(1,5) # [1,2,3,4]
s5=pd.Series(data=a**2,index=a)
print(s5)
```
#### Output
```
Output:
1 1
2 4
3 9
@ -111,8 +115,6 @@ dtype: int64
| `<series>.hasnans` | Return True if there is any NaN in the data |
| `<series>.empty` | Return True if the Series object is empty |
- If you use len() on a series object then it return total number of elements in the series object whereas <series_object>.count() return only the number of non NaN elements.
## Accessing a Series object and its elements
@ -126,12 +128,12 @@ import pandas as pd
s7 = pd.Series(data=[13, 45, 67, 89], index=['A', 'B', 'C', 'D'])
print(s7['A'])
```
#### Output
```
Output:
13
```
### Slicing a Series
- Slices are extracted based on their positional index, regardless of the custom index labels.
@ -146,15 +148,15 @@ import pandas as pd
s = pd.Series(data=[13, 45, 67, 89], index=['A', 'B', 'C', 'D'])
print(s[:2])
```
#### Output
```
Output:
A 13
B 45
dtype: int64
This example demonstrates that the first two elements (positions 0 and 1) are returned, regardless of their custom index labels.
```
This example demonstrates that the first two elements (positions 0 and 1) are returned, regardless of their custom index labels.
## Operation on series object
@ -171,8 +173,9 @@ s8['a'] = 100
s8.index = ['x', 'y', 'z']
print(s8)
```
#### Output
```
Output:
x 100
y 20
z 30
@ -181,25 +184,32 @@ dtype: int64
**Note: Series object are value-mutable but size immutable objects.**
### vector operations
### Vector operations
We can perform vector operations such as `+`,`-`,`/`,`%` etc.
#### Addition
```python
import pandas as pd
s9 = pd.Series([1, 2, 3])
print("addition:", s9 + 5)
print("subtraction:", s9 - 2)
print(s9 + 5)
```
```
output:
addition:
#### Output
```
0 6
1 7
2 8
dtype: int64
```
subtraction:
#### Subtraction
```python
print(s9 - 2)
```
#### Output
```
0 -1
1 0
2 1
@ -207,25 +217,32 @@ dtype: int64
```
### Arthmetic on series object
#### Addition
```python
import pandas as pd
s10 = pd.Series([1, 2, 3])
s11 = pd.Series([4, 5, 6])
print("addition:", s10 + s11)
print("multiplication:", s10 * s11)
print(s10 + s11)
```
```
output:
addition:
#### Output
```
0 5
1 7
2 9
dtype: int64
```
multiplication:
#### Multiplication
```python
print("s10 * s11)
```
#### Output
```
0 4
1 10
2 18
@ -249,26 +266,28 @@ s12 = pd.Series([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
print(s12.head(3))
print(s12.tail(3))
```
#### Output
```
Output:
0 10
1 20
2 30
dtype: int64
7 80
8 90
9 100
dtype: int64
```
If you dont provide any value to n the by default it give results for `n=5`.
### Few extra functions:
### Few extra functions
| **Function** | **Description** |
|----------------------------------------|------------------------------------------------------------------------|
| `<series_object>.sort_values()` | Return the Series object in ascending order based on its values. |
| `<series_object>.sort_index()` | Return the Series object in ascending order based on its index. |
| `<series_object>.sort_drop(<index>)` | Return the Series with the deleted index and its corresponding value. |
```python
import pandas as pd
@ -277,18 +296,17 @@ print(s13.sort_values())
print(s13.sort_index())
print(s13.drop('a'))
```
#### Output
```
Output:
a 1
b 2
c 3
dtype: int64
a 1
b 2
c 3
dtype: int64
c 3
b 2
dtype: int64