Update pandas_series.md

pull/1100/head
anamika123 2024-06-22 18:19:33 +05:30
rodzic 4afd4a98f2
commit 4916b99a3a
1 zmienionych plików z 108 dodań i 93 usunięć

Wyświetl plik

@ -13,14 +13,14 @@ import pandas as pd
s1 = pd.Series([4, 5, 2, 3])
print(s1)
#Output:
#0 4
#1 5
#2 2
#3 3
#dtype: int64
```
```
Output:
0 4
1 5
2 2
3 3
dtype: int64
```
### Series from a Dictionary
@ -31,12 +31,13 @@ import pandas as pd
s2 = pd.Series({'A': 1, 'B': 2, 'C': 3})
print(s2)
#Output:
#A 1
#B 2
#C 3
#dtype: int64
```
```
Output:
A 1
B 2
C 3
dtype: int64
```
@ -50,12 +51,13 @@ import pandas as pd
s4 = pd.Series([1, 2, 3], index=['a', 'b', 'c'], dtype='float64')
print(s4)
#output
#a 1.0
#b 2.0
#c 3.0
#dtype: float64
```
```
Output:
a 1.0
b 2.0
c 3.0
dtype: float64
```
### Specifying NaN Values:
@ -66,13 +68,13 @@ print(s4)
import pandas as pd
s3=pd.Series([1,np.Nan,2])
print(s3)
#output:
#0 1.0
#1 NaN
#2 2.0
#dtype: float64
```
```
Output:
0 1.0
1 NaN
2 2.0
dtype: float64
```
@ -86,15 +88,15 @@ import pandas as pd
a=np.arange(1,5) # [1,2,3,4]
s5=pd.Series(data=a**2,index=a)
print(s5)
#output:
#1 1
#2 4
#3 9
#4 16
#dtype: int64
```
```
Output:
1 1
2 4
3 9
4 16
dtype: int64
```
## Series Object Attributes
@ -123,9 +125,10 @@ import pandas as pd
s7 = pd.Series(data=[13, 45, 67, 89], index=['A', 'B', 'C', 'D'])
print(s7['A'])
#output
#13
```
```
Output:
13
```
@ -142,12 +145,14 @@ import pandas as pd
s = pd.Series(data=[13, 45, 67, 89], index=['A', 'B', 'C', 'D'])
print(s[:2])
```
```
Output:
A 13
B 45
dtype: int64
#Output
#A 13
#B 45
#dtype: int64
#This example demonstrates that the first two elements (positions 0 and 1) are returned, regardless of their custom index labels.
This example demonstrates that the first two elements (positions 0 and 1) are returned, regardless of their custom index labels.
```
@ -165,12 +170,13 @@ s8 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
s8['a'] = 100
s8.index = ['x', 'y', 'z']
print(s8)
#output
#x 100
#y 20
#z 30
#dtype: int64
```
```
Output:
x 100
y 20
z 30
dtype: int64
```
**Note: Series object are value-mutable but size immutable objects.**
@ -183,18 +189,21 @@ import pandas as pd
s9 = pd.Series([1, 2, 3])
print("addition:", s9 + 5)
print("subtraction:", s9 - 2)
```
```
output:
#output:
#addition:
#0 6
#1 7
#2 8
#dtype: int64
#subtraction:
#0 -1
#1 0
#2 1
#dtype: int64
addition:
0 6
1 7
2 8
dtype: int64
subtraction:
0 -1
1 0
2 1
dtype: int64
```
### Arthmetic on series object
@ -206,18 +215,21 @@ s11 = pd.Series([4, 5, 6])
print("addition:", s10 + s11)
print("multiplication:", s10 * s11)
```
```
output:
#output:
#addition:
#0 5
#1 7
#2 9
#dtype: int64
#multiplication:
#0 4
#1 10
#2 18
#dtype: int64
addition:
0 5
1 7
2 9
dtype: int64
multiplication:
0 4
1 10
2 18
dtype: int64
```
Here one thing we should keep in mind that both the series object should have same indexes otherwise it will return NaN value to all the indexes of two series object .
@ -236,17 +248,18 @@ import pandas as pd
s12 = pd.Series([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
print(s12.head(3))
print(s12.tail(3))
```
```
Output:
0 10
1 20
2 30
dtype: int64
#output
#0 10
#1 20
#2 30
#dtype: int64
#7 80
#8 90
#9 100
#dtype: int64
7 80
8 90
9 100
dtype: int64
```
If you dont provide any value to n the by default it give results for `n=5`.
@ -263,20 +276,22 @@ s13 = pd.Series([3, 1, 2], index=['c', 'a', 'b'])
print(s13.sort_values())
print(s13.sort_index())
print(s13.drop('a'))
#Output
#a 1
#b 2
#c 3
#dtype: int64
```
```
Output:
a 1
b 2
c 3
dtype: int64
#a 1
#b 2
#c 3
#dtype: int64
a 1
b 2
c 3
dtype: int64
#c 3
#b 2
#dtype: int64
c 3
b 2
dtype: int64
```
## Conclusion