kopia lustrzana https://github.com/animator/learn-python
Update matplotlib-box-plots.md
rodzic
c54f6128e9
commit
c3f715e983
|
@ -40,60 +40,97 @@ Syntax - matplotlib.pyplot.boxplot(data,notch=none,vert=none,patch_artist,widths
|
|||
## Implementation of Box Plot in Python
|
||||
|
||||
### Import libraries
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
|
||||
### Creating dataset
|
||||
|
||||
np.random.seed(10)
|
||||
|
||||
data = np.random.normal(100, 20, 200)
|
||||
|
||||
fig = plt.figure(figsize =(10, 7))
|
||||
|
||||
### Creating plot
|
||||
|
||||
plt.boxplot(data)
|
||||
|
||||
### show plot
|
||||
|
||||
plt.show()
|
||||
|
||||
### Implementation of Multiple Box Plot in Python
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
|
||||
np.random.seed(10)
|
||||
|
||||
dataSet1 = np.random.normal(100, 10, 220)
|
||||
|
||||
dataSet2 = np.random.normal(80, 20, 200)
|
||||
|
||||
dataSet3 = np.random.normal(60, 35, 220)
|
||||
|
||||
dataSet4 = np.random.normal(50, 40, 200)
|
||||
|
||||
dataSet = [dataSet1, dataSet2, dataSet3, dataSet4]
|
||||
|
||||
figure = plt.figure(figsize =(10, 7))
|
||||
|
||||
ax = figure.add_axes([0, 0, 1, 1])
|
||||
|
||||
bp = ax.boxplot(dataSet)
|
||||
|
||||
plt.show()
|
||||
|
||||
### Implementation of Box Plot with Outliers (visual representation of the sales distribution for each product, and the outliers highlight months with exceptionally high or low sales)
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
|
||||
### Data for monthly sales
|
||||
|
||||
product_A_sales = [100, 110, 95, 105, 115, 90, 120, 130, 80, 125, 150, 200]
|
||||
|
||||
product_B_sales = [90, 105, 100, 98, 102, 105, 110, 95, 112, 88, 115, 250]
|
||||
|
||||
product_C_sales = [80, 85, 90, 78, 82, 85, 88, 92, 75, 85, 200, 95]
|
||||
|
||||
### Introducing outliers
|
||||
|
||||
product_A_sales.extend([300, 80])
|
||||
|
||||
product_B_sales.extend([50, 300])
|
||||
|
||||
product_C_sales.extend([70, 250])
|
||||
|
||||
### Creating a box plot with outliers
|
||||
|
||||
plt.boxplot([product_A_sales, product_B_sales, product_C_sales], sym='o')
|
||||
|
||||
plt.title('Monthly Sales Performance by Product with Outliers')
|
||||
|
||||
plt.xlabel('Products')
|
||||
|
||||
plt.ylabel('Sales')
|
||||
|
||||
plt.show()
|
||||
|
||||
### Implementation of Grouped Box Plot (to compare the exam scores of students from three different classes (A, B, and C))
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
|
||||
class_A_scores = [75, 80, 85, 90, 95]
|
||||
|
||||
class_B_scores = [70, 75, 80, 85, 90]
|
||||
|
||||
class_C_scores = [65, 70, 75, 80, 85]
|
||||
|
||||
### Creating a grouped box plot
|
||||
|
|
Ładowanie…
Reference in New Issue