Update matplotlib-box-plots.md

pull/714/head
Vrisha Shah 2024-05-31 08:09:21 +05:30 zatwierdzone przez GitHub
rodzic c54f6128e9
commit c3f715e983
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 38 dodań i 1 usunięć

Wyświetl plik

@ -40,60 +40,97 @@ Syntax - matplotlib.pyplot.boxplot(data,notch=none,vert=none,patch_artist,widths
## Implementation of Box Plot in Python
### Import libraries
import matplotlib.pyplot as plt
import numpy as np
### Creating dataset
np.random.seed(10)
data = np.random.normal(100, 20, 200)
fig = plt.figure(figsize =(10, 7))
### Creating plot
plt.boxplot(data)
### show plot
plt.show()
### Implementation of Multiple Box Plot in Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(10)
dataSet1 = np.random.normal(100, 10, 220)
dataSet2 = np.random.normal(80, 20, 200)
dataSet3 = np.random.normal(60, 35, 220)
dataSet4 = np.random.normal(50, 40, 200)
dataSet = [dataSet1, dataSet2, dataSet3, dataSet4]
figure = plt.figure(figsize =(10, 7))
ax = figure.add_axes([0, 0, 1, 1])
bp = ax.boxplot(dataSet)
plt.show()
### Implementation of Box Plot with Outliers (visual representation of the sales distribution for each product, and the outliers highlight months with exceptionally high or low sales)
import matplotlib.pyplot as plt
import numpy as np
### Data for monthly sales
product_A_sales = [100, 110, 95, 105, 115, 90, 120, 130, 80, 125, 150, 200]
product_B_sales = [90, 105, 100, 98, 102, 105, 110, 95, 112, 88, 115, 250]
product_C_sales = [80, 85, 90, 78, 82, 85, 88, 92, 75, 85, 200, 95]
### Introducing outliers
product_A_sales.extend([300, 80])
product_B_sales.extend([50, 300])
product_C_sales.extend([70, 250])
### Creating a box plot with outliers
plt.boxplot([product_A_sales, product_B_sales, product_C_sales], sym='o')
plt.title('Monthly Sales Performance by Product with Outliers')
plt.xlabel('Products')
plt.ylabel('Sales')
plt.show()
### Implementation of Grouped Box Plot (to compare the exam scores of students from three different classes (A, B, and C))
import matplotlib.pyplot as plt
import numpy as np
class_A_scores = [75, 80, 85, 90, 95]
class_B_scores = [70, 75, 80, 85, 90]
class_C_scores = [65, 70, 75, 80, 85]
### Creating a grouped box plot