From c3f715e98321ff5afe0fb50d5dd80e7ec7366a59 Mon Sep 17 00:00:00 2001 From: Vrisha Shah <74671946+Vrisha213@users.noreply.github.com> Date: Fri, 31 May 2024 08:09:21 +0530 Subject: [PATCH] Update matplotlib-box-plots.md --- .../matplotlib-box-plots.md | 39 ++++++++++++++++++- 1 file changed, 38 insertions(+), 1 deletion(-) diff --git a/contrib/plotting-visualization/matplotlib-box-plots.md b/contrib/plotting-visualization/matplotlib-box-plots.md index 323b5a4..4d76243 100644 --- a/contrib/plotting-visualization/matplotlib-box-plots.md +++ b/contrib/plotting-visualization/matplotlib-box-plots.md @@ -40,60 +40,97 @@ Syntax - matplotlib.pyplot.boxplot(data,notch=none,vert=none,patch_artist,widths ## Implementation of Box Plot in Python ### Import libraries + import matplotlib.pyplot as plt + import numpy as np ### Creating dataset + np.random.seed(10) + data = np.random.normal(100, 20, 200) + fig = plt.figure(figsize =(10, 7)) ### Creating plot + plt.boxplot(data) ### show plot + plt.show() ### Implementation of Multiple Box Plot in Python + import matplotlib.pyplot as plt + import numpy as np + np.random.seed(10) + dataSet1 = np.random.normal(100, 10, 220) -dataSet2 = np.random.normal(80, 20, 200) + +dataSet2 = np.random.normal(80, 20, 200) + dataSet3 = np.random.normal(60, 35, 220) + dataSet4 = np.random.normal(50, 40, 200) + dataSet = [dataSet1, dataSet2, dataSet3, dataSet4] + figure = plt.figure(figsize =(10, 7)) + ax = figure.add_axes([0, 0, 1, 1]) + bp = ax.boxplot(dataSet) + plt.show() ### Implementation of Box Plot with Outliers (visual representation of the sales distribution for each product, and the outliers highlight months with exceptionally high or low sales) + import matplotlib.pyplot as plt + import numpy as np ### Data for monthly sales + product_A_sales = [100, 110, 95, 105, 115, 90, 120, 130, 80, 125, 150, 200] + product_B_sales = [90, 105, 100, 98, 102, 105, 110, 95, 112, 88, 115, 250] + product_C_sales = [80, 85, 90, 78, 82, 85, 88, 92, 75, 85, 200, 95] ### Introducing outliers + product_A_sales.extend([300, 80]) + product_B_sales.extend([50, 300]) + product_C_sales.extend([70, 250]) ### Creating a box plot with outliers + plt.boxplot([product_A_sales, product_B_sales, product_C_sales], sym='o') + plt.title('Monthly Sales Performance by Product with Outliers') + plt.xlabel('Products') + plt.ylabel('Sales') + plt.show() ### Implementation of Grouped Box Plot (to compare the exam scores of students from three different classes (A, B, and C)) + import matplotlib.pyplot as plt + import numpy as np + class_A_scores = [75, 80, 85, 90, 95] + class_B_scores = [70, 75, 80, 85, 90] + class_C_scores = [65, 70, 75, 80, 85] ### Creating a grouped box plot