kopia lustrzana https://github.com/animator/learn-python
Update Introduction_to_Pandas_Library_and_DataFrames.md
rodzic
f8f8686d6e
commit
ab6428fd59
|
@ -1,8 +1,5 @@
|
||||||
# Introduction_to_Pandas_Library_and_DataFrames
|
# Introduction_to_Pandas_Library_and_DataFrames
|
||||||
|
|
||||||
|
|
||||||
> Content Creator - Krishna Kaushik
|
|
||||||
|
|
||||||
**As you have learnt Python Programming , now it's time for some applications.**
|
**As you have learnt Python Programming , now it's time for some applications.**
|
||||||
|
|
||||||
- Machine Learning and Data Science is the emerging field of today's time , to work in this this field your first step should be `Data Science` as Machine Learning is all about data.
|
- Machine Learning and Data Science is the emerging field of today's time , to work in this this field your first step should be `Data Science` as Machine Learning is all about data.
|
||||||
|
@ -110,42 +107,15 @@ You can also create a DataFrame by using `pd.DataFrame()` and passing it a Pytho
|
||||||
# Let's create
|
# Let's create
|
||||||
cars_with_colours = pd.DataFrame({"Cars" : ["BMW","Audi","Thar","Honda"],
|
cars_with_colours = pd.DataFrame({"Cars" : ["BMW","Audi","Thar","Honda"],
|
||||||
"Colour" : ["Black","White","Red","Green"]})
|
"Colour" : ["Black","White","Red","Green"]})
|
||||||
cars_with_colours
|
print(cars_with_colours)
|
||||||
```
|
```
|
||||||
<table border="1" class="dataframe">
|
|
||||||
<thead>
|
|
||||||
<tr style="text-align: right;">
|
|
||||||
<th></th>
|
|
||||||
<th>Cars</th>
|
|
||||||
<th>Colour</th>
|
|
||||||
</tr>
|
|
||||||
</thead>
|
|
||||||
<tbody>
|
|
||||||
<tr>
|
|
||||||
<th>0</th>
|
|
||||||
<td>BMW</td>
|
|
||||||
<td>Black</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>1</th>
|
|
||||||
<td>Audi</td>
|
|
||||||
<td>White</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>2</th>
|
|
||||||
<td>Thar</td>
|
|
||||||
<td>Red</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>3</th>
|
|
||||||
<td>Honda</td>
|
|
||||||
<td>Green</td>
|
|
||||||
</tr>
|
|
||||||
</tbody>
|
|
||||||
</table>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
|
|
||||||
|
Cars Colour
|
||||||
|
0 BMW Black
|
||||||
|
1 Audi White
|
||||||
|
2 Thar Red
|
||||||
|
3 Honda Green
|
||||||
|
|
||||||
|
|
||||||
The dictionary key is the `column name` and value are the `column data`.
|
The dictionary key is the `column name` and value are the `column data`.
|
||||||
|
|
||||||
|
@ -194,42 +164,15 @@ age
|
||||||
|
|
||||||
record = pd.DataFrame({"Student_Name":students ,
|
record = pd.DataFrame({"Student_Name":students ,
|
||||||
"Age" :age})
|
"Age" :age})
|
||||||
record
|
print(record)
|
||||||
```
|
```
|
||||||
<table border="1" class="dataframe">
|
|
||||||
<thead>
|
|
||||||
<tr style="text-align: right;">
|
|
||||||
<th></th>
|
|
||||||
<th>Student_Name</th>
|
|
||||||
<th>Age</th>
|
|
||||||
</tr>
|
|
||||||
</thead>
|
|
||||||
<tbody>
|
|
||||||
<tr>
|
|
||||||
<th>0</th>
|
|
||||||
<td>Ram</td>
|
|
||||||
<td>19</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>1</th>
|
|
||||||
<td>Mohan</td>
|
|
||||||
<td>20</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>2</th>
|
|
||||||
<td>Krishna</td>
|
|
||||||
<td>21</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>3</th>
|
|
||||||
<td>Shivam</td>
|
|
||||||
<td>24</td>
|
|
||||||
</tr>
|
|
||||||
</tbody>
|
|
||||||
</table>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
|
|
||||||
|
Student_Name Age
|
||||||
|
0 Ram 19
|
||||||
|
1 Mohan 20
|
||||||
|
2 Krishna 21
|
||||||
|
3 Shivam 24
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
@ -269,53 +212,19 @@ record.dtypes
|
||||||
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
record.describe() # It only display the results for numeric data
|
print(record.describe()) # It only display the results for numeric data
|
||||||
```
|
```
|
||||||
<table border="1" class="dataframe">
|
|
||||||
<thead>
|
|
||||||
<tr style="text-align: right;">
|
|
||||||
<th></th>
|
|
||||||
<th>Age</th>
|
|
||||||
</tr>
|
|
||||||
</thead>
|
|
||||||
<tbody>
|
|
||||||
<tr>
|
|
||||||
<th>count</th>
|
|
||||||
<td>4.000000</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>mean</th>
|
|
||||||
<td>21.000000</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>std</th>
|
|
||||||
<td>2.160247</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>min</th>
|
|
||||||
<td>19.000000</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>25%</th>
|
|
||||||
<td>19.750000</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>50%</th>
|
|
||||||
<td>20.500000</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>75%</th>
|
|
||||||
<td>21.750000</td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
|
||||||
<th>max</th>
|
|
||||||
<td>24.000000</td>
|
|
||||||
</tr>
|
|
||||||
</tbody>
|
|
||||||
</table>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
|
|
||||||
|
Age
|
||||||
|
count 4.000000
|
||||||
|
mean 21.000000
|
||||||
|
std 2.160247
|
||||||
|
min 19.000000
|
||||||
|
25% 19.750000
|
||||||
|
50% 20.500000
|
||||||
|
75% 21.750000
|
||||||
|
max 24.000000
|
||||||
|
|
||||||
|
|
||||||
#### 3. Use `.info()` to find information about the dataframe
|
#### 3. Use `.info()` to find information about the dataframe
|
||||||
|
|
||||||
|
@ -333,9 +242,3 @@ record.info()
|
||||||
1 Age 4 non-null int64
|
1 Age 4 non-null int64
|
||||||
dtypes: int64(1), object(1)
|
dtypes: int64(1), object(1)
|
||||||
memory usage: 196.0+ bytes
|
memory usage: 196.0+ bytes
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
Ładowanie…
Reference in New Issue