diff --git a/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md b/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md
index 809a155..3552437 100644
--- a/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md
+++ b/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md
@@ -1,8 +1,5 @@
# Introduction_to_Pandas_Library_and_DataFrames
-
-> Content Creator - Krishna Kaushik
-
**As you have learnt Python Programming , now it's time for some applications.**
- Machine Learning and Data Science is the emerging field of today's time , to work in this this field your first step should be `Data Science` as Machine Learning is all about data.
@@ -110,42 +107,15 @@ You can also create a DataFrame by using `pd.DataFrame()` and passing it a Pytho
# Let's create
cars_with_colours = pd.DataFrame({"Cars" : ["BMW","Audi","Thar","Honda"],
"Colour" : ["Black","White","Red","Green"]})
-cars_with_colours
+print(cars_with_colours)
```
-
-
-
- |
- Cars |
- Colour |
-
-
-
-
- 0 |
- BMW |
- Black |
-
-
- 1 |
- Audi |
- White |
-
-
- 2 |
- Thar |
- Red |
-
-
- 3 |
- Honda |
- Green |
-
-
-
-
-
+ Cars Colour
+ 0 BMW Black
+ 1 Audi White
+ 2 Thar Red
+ 3 Honda Green
+
The dictionary key is the `column name` and value are the `column data`.
@@ -194,42 +164,15 @@ age
record = pd.DataFrame({"Student_Name":students ,
"Age" :age})
-record
+print(record)
```
-
-
-
- |
- Student_Name |
- Age |
-
-
-
-
- 0 |
- Ram |
- 19 |
-
-
- 1 |
- Mohan |
- 20 |
-
-
- 2 |
- Krishna |
- 21 |
-
-
- 3 |
- Shivam |
- 24 |
-
-
-
-
-
+ Student_Name Age
+ 0 Ram 19
+ 1 Mohan 20
+ 2 Krishna 21
+ 3 Shivam 24
+
```python
@@ -269,53 +212,19 @@ record.dtypes
```python
-record.describe() # It only display the results for numeric data
+print(record.describe()) # It only display the results for numeric data
```
-
-
-
- |
- Age |
-
-
-
-
- count |
- 4.000000 |
-
-
- mean |
- 21.000000 |
-
-
- std |
- 2.160247 |
-
-
- min |
- 19.000000 |
-
-
- 25% |
- 19.750000 |
-
-
- 50% |
- 20.500000 |
-
-
- 75% |
- 21.750000 |
-
-
- max |
- 24.000000 |
-
-
-
-
-
+ Age
+ count 4.000000
+ mean 21.000000
+ std 2.160247
+ min 19.000000
+ 25% 19.750000
+ 50% 20.500000
+ 75% 21.750000
+ max 24.000000
+
#### 3. Use `.info()` to find information about the dataframe
@@ -333,9 +242,3 @@ record.info()
1 Age 4 non-null int64
dtypes: int64(1), object(1)
memory usage: 196.0+ bytes
-
-
-
-```python
-
-```