diff --git a/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md b/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md index 809a155..3552437 100644 --- a/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md +++ b/contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md @@ -1,8 +1,5 @@ # Introduction_to_Pandas_Library_and_DataFrames - -> Content Creator - Krishna Kaushik - **As you have learnt Python Programming , now it's time for some applications.** - Machine Learning and Data Science is the emerging field of today's time , to work in this this field your first step should be `Data Science` as Machine Learning is all about data. @@ -110,42 +107,15 @@ You can also create a DataFrame by using `pd.DataFrame()` and passing it a Pytho # Let's create cars_with_colours = pd.DataFrame({"Cars" : ["BMW","Audi","Thar","Honda"], "Colour" : ["Black","White","Red","Green"]}) -cars_with_colours +print(cars_with_colours) ``` - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
CarsColour
0BMWBlack
1AudiWhite
2TharRed
3HondaGreen
- - + Cars Colour + 0 BMW Black + 1 Audi White + 2 Thar Red + 3 Honda Green + The dictionary key is the `column name` and value are the `column data`. @@ -194,42 +164,15 @@ age record = pd.DataFrame({"Student_Name":students , "Age" :age}) -record +print(record) ``` - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Student_NameAge
0Ram19
1Mohan20
2Krishna21
3Shivam24
- - + Student_Name Age + 0 Ram 19 + 1 Mohan 20 + 2 Krishna 21 + 3 Shivam 24 + ```python @@ -269,53 +212,19 @@ record.dtypes ```python -record.describe() # It only display the results for numeric data +print(record.describe()) # It only display the results for numeric data ``` - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Age
count4.000000
mean21.000000
std2.160247
min19.000000
25%19.750000
50%20.500000
75%21.750000
max24.000000
- - + Age + count 4.000000 + mean 21.000000 + std 2.160247 + min 19.000000 + 25% 19.750000 + 50% 20.500000 + 75% 21.750000 + max 24.000000 + #### 3. Use `.info()` to find information about the dataframe @@ -333,9 +242,3 @@ record.info() 1 Age 4 non-null int64 dtypes: int64(1), object(1) memory usage: 196.0+ bytes - - - -```python - -```