kopia lustrzana https://github.com/animator/learn-python
Update binomial_distribution.md
rodzic
3f731e7f21
commit
7d800d5980
|
@ -1,7 +1,3 @@
|
|||
<script type="text/javascript" async
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
|
||||
</script>
|
||||
|
||||
# Binomial Distribution
|
||||
|
||||
## Introduction
|
||||
|
@ -16,16 +12,16 @@ The binomial distribution is a discrete probability distribution that describes
|
|||
|
||||
The binomial distribution is defined by the probability mass function (PMF):
|
||||
|
||||
\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \]
|
||||
P(X = k) = (n choose k) p^k (1 - p)^(n - k)
|
||||
|
||||
where:
|
||||
- \(\binom{n}{k}\) is the binomial coefficient, calculated as \(\frac{n!}{k!(n-k)!}\).
|
||||
- (n choose k) is the binomial coefficient, calculated as n! / (k!(n-k)!).
|
||||
|
||||
## Properties of Binomial Distribution
|
||||
|
||||
- **Mean:** \( \mu = np \)
|
||||
- **Variance:** \( \sigma^2 = np(1 - p) \)
|
||||
- **Standard Deviation:** \( \sigma = \sqrt{np(1 - p)} \)
|
||||
- **Mean:** μ = np
|
||||
- **Variance:** σ² = np(1 - p)
|
||||
- **Standard Deviation:** σ = √(np(1 - p))
|
||||
|
||||
## Python Implementation
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue