Update binomial_distribution.md

pull/465/head
Rithish S 2024-05-20 21:57:32 +05:30 zatwierdzone przez GitHub
rodzic 3f731e7f21
commit 7d800d5980
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 5 dodań i 9 usunięć

Wyświetl plik

@ -1,7 +1,3 @@
<script type="text/javascript" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
</script>
# Binomial Distribution
## Introduction
@ -16,16 +12,16 @@ The binomial distribution is a discrete probability distribution that describes
The binomial distribution is defined by the probability mass function (PMF):
\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \]
P(X = k) = (n choose k) p^k (1 - p)^(n - k)
where:
- \(\binom{n}{k}\) is the binomial coefficient, calculated as \(\frac{n!}{k!(n-k)!}\).
- (n choose k) is the binomial coefficient, calculated as n! / (k!(n-k)!).
## Properties of Binomial Distribution
- **Mean:** \( \mu = np \)
- **Variance:** \( \sigma^2 = np(1 - p) \)
- **Standard Deviation:** \( \sigma = \sqrt{np(1 - p)} \)
- **Mean:** μ = np
- **Variance:** σ² = np(1 - p)
- **Standard Deviation:** σ = √(np(1 - p))
## Python Implementation