From 7d800d598046394c7409eab176750f0468198e5f Mon Sep 17 00:00:00 2001 From: Rithish S <123345316+Rithish5513U@users.noreply.github.com> Date: Mon, 20 May 2024 21:57:32 +0530 Subject: [PATCH] Update binomial_distribution.md --- contrib/machine-learning/binomial_distribution.md | 14 +++++--------- 1 file changed, 5 insertions(+), 9 deletions(-) diff --git a/contrib/machine-learning/binomial_distribution.md b/contrib/machine-learning/binomial_distribution.md index 94e4c41..0d1d328 100644 --- a/contrib/machine-learning/binomial_distribution.md +++ b/contrib/machine-learning/binomial_distribution.md @@ -1,7 +1,3 @@ - - # Binomial Distribution ## Introduction @@ -16,16 +12,16 @@ The binomial distribution is a discrete probability distribution that describes The binomial distribution is defined by the probability mass function (PMF): -\[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \] +P(X = k) = (n choose k) p^k (1 - p)^(n - k) where: -- \(\binom{n}{k}\) is the binomial coefficient, calculated as \(\frac{n!}{k!(n-k)!}\). +- (n choose k) is the binomial coefficient, calculated as n! / (k!(n-k)!). ## Properties of Binomial Distribution -- **Mean:** \( \mu = np \) -- **Variance:** \( \sigma^2 = np(1 - p) \) -- **Standard Deviation:** \( \sigma = \sqrt{np(1 - p)} \) +- **Mean:** μ = np +- **Variance:** σ² = np(1 - p) +- **Standard Deviation:** σ = √(np(1 - p)) ## Python Implementation